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Abstract

Speaker diarization (or “who spoke when”) is the task of segmenting speech into homogeneous
speaker-specific regions. Recently, there have been several advances in performing overlap-aware diariza-
tion, i.e., recognizing multiple speakers in overlapping speech. These include traditional clustering-based
systems, as well as novel end-to-end approaches trained with supervision. Since machine learning tasks
often benefit from an ensemble of systems, it may be desirable to develop a method that combines these
complementary approaches for diarization. In this paper, we build upon a recently proposed paradigm for
performing such combination, using a two-stage “label mapping” and “label voting” technique. In partic-
ular, we analyze the label mapping stage in the framework of a maximum orthogonal graph partitioning
problem. We first show that the original algorithm used for this task is exponential in the input size, which
makes it intractable. We then propose two new algorithms, based on a greedy and a randomized local
search strategy, respectively, and derive approximation bounds for them. We empirically demonstrate the
effectiveness of our methods on the AMI meeting corpus, where our system combination improves the
diarization error rate by about 4% relative over the single best system. Our code is publicly available:
https://github.com/desh2608/dover-lap.

1 Introduction

1.1 A background in speaker diarization

Speech is one of the most popular modalities for communication and dissemination of ideas. In everyday
life, we come across a wide variety of scenarios where 2 or more people interact using the spoken word.
These interactions may occur in the form of telephone conversations, multi-speaker meetings, or simply a
conversation over a dinner party. In the digital age, video/audio conferencing has also become a popular
mode of communication. Given its widespread use, a natural question is whether we can identify the seg-
ments of speech spoken by different speakers. Such segmentation is often useful for applications such as
meeting transcription, and also enables downstream psycho-linguistic analysis such as the study of language
acquisition in infants, pyschotherapy and human interaction, and observing collaborative learning in peer
groups.

Speaker diarization (or “who spoke when”) is defined as the task of segmenting speech into homogeneous
speaker-specific regions [MBE+12, TR06]. The input in this task is an audio recording (single or multi-
channel) which may extend from a few minutes up to several hours (or days, such as in scenarios like child
language acquisition). The desired output is a set of segments with associated speaker labels. Formally,
given an audio recording R, the diarization system is a function f such that

f(R) = (U,K), (1)
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Figure 1: An illustration of the speaker diarization task. The system estimates N = 3 speakers in the recording.

where
U = {(∆j , uj)} (2)

is a set of speaker-labeled time segments with ∆j = (tj , tj+1) and uj ∈ [N ], andN is the estimated number
of speakers inR. Depending on the use-case, the true value ofN may or may not be known beforehand. The
speaker labels uj are relative labels, i.e., they are only consistent within the recording. Fig. 1 illustrates an
example of the diarization task where the system predicts 3 speakers: A, B, and C, respectively. Note that
some parts of the audio may be “non-speech,” i.e., they do not have any assigned speaker (for e.g., the t4− t5
segment), whereas some other parts may have “overlapping speech” and are assigned to multiple speakers
(for e.g., the t2 − t3 and t6 − t7 segments).

1.2 Methods for speaker diarization

In the 2000s, NIST and DARPA organized several challenges to advance the state of speaker diarization.
Since statistical learning-based approaches for diarization were still fairly new at the time, the evaluations
were suitably constrained — participants were often provided oracle speech segmentation (i.e., non-speech
regions were demarcated), the number of speakers was known beforehand, and the audio recordings were
assumed to have zero overlapping speech. More recently, as the diarization task has matured, we have moved
towards unconstrained evaluations. The CHiME-6 [WMBV20] and DIHARD [RCC+19, RSK+20] chal-
lenges, for example, contain challenging recordings with high noise and overlapping speech and a diverse
number of speakers.

This shift in evaluation happened as a result of several advances in systems that perform speaker di-
arization. The traditional approach for speaker diarization involved a clustering of segment-level speaker
embeddings, optionally followed by resegmentation [GRSS+17, PHKN20, LPDB20]. This approach re-
quires separately optimized speech activity detection components, and also assumes that the recording did
not contain overlapping speech. To alleviate the latter problem, several methods have been proposed which
seek to employ overlap detection modules and use some heuristics of the clustering process to assign ex-
traneous speakers to the overlapping segments [RHK21, BBGP20]. More recently, supervised diarization
methods such as region proposal networks (RPN), end-to-end neural diarization (EEND), and target-speaker
voice activity detection (TS-VAD) have been proposed which inherently perform overlapping speaker assign-
ment [HWF+20, FWH+20,MKP+20]. An alternate paradigm for overlap-aware diarization involves using
a continuous speech separation (CSS) module to first split the recording into 2 or 3 streams, followed by
clustering of speakers across the streams [RDC+21,XKC+20]. Fig. 2 provides an overview of some of these
diarization systems.

1.3 Ensembles of diarization systems

Machine learning tasks often benefit from an ensemble of systems with complementary strengths. For exam-
ples, ROVER (Recognition Output Voting Error Reduction) is a popular combination method for automatic
speech recognition [Fis97]. With the availability of different diarization methods, there has recently been

2



Agglomerative
hierarchical clustering

[GRSS+17]

Clustering of speaker embeddings

Spectral clustering
[PHKN20]

Variational Bayes
clustering [LPDB20]

Overlap-aware Spectral
clustering [RHK21]

VB-based overlap
assignment [BBGP20]Speaker

Diarization

Region proposal
networks [HWF+20]

Supervised training based methods

Target-speaker VAD
[MKP+20]

End-to-end neural
diarization [FWH+20]

Separate + diarize

CSS + spectral
clustering [XKC+20]

Figure 2: An overview of some of the diarization methods proposed in literature. The methods in grey boxes cannot
handle overlapping speech.

some interest in developing a system combination technique for speaker diarization. However, this is inher-
ently a hard problem for several reasons:

1. Different diarization outputs (or hypotheses) may have different number of speaker estimates for the
same recording.

2. The diarization hypotheses are in different label spaces, and speaker identities are only consistent
within a hypotheses. For example, systems A and B may assign labels (A1, A2), and (B1, B2, B3),
respectively, for some recording, and there is no correspondence between these 2 sets of speaker labels.

3. For overlap-aware diarization systems, the hypotheses may disagree on which speech segments con-
tain overlapping speakers, and so any combination system needs to have a mechanism to arrive at a
consensus.

Next, we will formalize this task of combining diarization system outputs. We assume that we are
given the hypotheses U1, . . . , UK from K diarization systems, where each system can perform overlapping
speaker assignment and may contain different number of speakers, c1, . . . , cK , respectively. Recall, from
equation (2), that Uk is a set of tuples containing time intervals and the corresponding speaker assignment.

We define the problem of combining the hypothesis as finding a joint diarization hypothesis Û = g(U1, . . . , UK)
such that Û minimizes the chosen diarization error metric with respect to an unknown reference. A straight-
forward approach for solving this problem involves dividing the input hypotheses into small time durations,
and performing majority voting individually with each such region. However, there are two issues with this
solution. First, to perform any kind of voting (within a region), the system outputs need to be in the same la-
bel space. Second, overlap-aware systems may contain different number of speakers within any such region,
and for overlap-aware combination, the voting mechanism needs to account for this possibility.

DOVER (Diarization output voting error reduction) [SY19] was the first method introduced for combin-
ing diarization systems. It proposed the two-stage framework of combination, involving label mapping and
label voting, which are defined below.

1. Label mapping: Since diarization outputs do not have “absolute” speaker identities, the speaker labels
of different outputs have no strict correspondence. In order to be able to make any “voting mechanism”
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possible, the outputs have to be mapped to a common label space — we informally refer to this as the
label mapping problem. We will formalize this task, in terms of the terminology we have developed,
in § 3.1.

2. Label voting: Once all the hypotheses have beenmapped to a common label space, voting is performed
for time regions demarcated by timestamps within which every hypotheses has consistent speaker
assignments (i.e., no speaker changes happen inside the region). For overlap-aware hypotheses, we
additionally need to devise a strategy for estimating the number of speakers in a region in the output
combination.

In this paper, we will focus our attention on the label mapping stage. In particular, we will formulate the
label mapping task in the framework of a maximum orthogonal graph partitioning problem, and then propose
and analyze several algorithms in this framework. We will design algorithms based on a greedy Hungarian
strategy and a randomized local search technique, and derive approximation ratios for both algorithms. Fi-
nally, through experiments on the AMI meeting dataset, we will demonstrate the empirical strengths of our
proposed algorithms.

2 Related work

The problem of label mapping that we analyze in this paper is analogous to the popular task of index domain
alignment in distributed array processing [LC90]. It has also been studied to some degree in logistics [EJZ00]
and manufacturing systems [ZZ02]. A related task is to enumerate maximal k-cliques in k-partite graphs,
for which several branch-and-bound methods have been proposed [MK13]. Approximation algorithms for
such problems have been used extensively in computational biology, such as for the alignment for metabolic
pathways [CHS17] and for the global alignment of multiple protein interactions [SXB08].

In this paper, we borrow algorithmic and analytical ideas from two key papers. In [HLZ00], the authors
presented a graph formalism demonstrating the equivalence between the maximum (minimum) orthogonal
partition problem and the minimum (maximum) disjoint k-clique problem, and proposed greedy incremental
algorithms which were based on maximum matching in a complete bipartite graph. We use this algorithm
as our first method, and refer to it as the greedy Hungarian algorithm, since bipartite matching is the same as
linear sum assignment. In [LPZ06], a greedy local search algorithm was proposed with approximation ratio
similar to the method from [HLZ00], and then extended to a randomized version which achieved a close to
optimal solution under some assumptions.

3 Label mapping as a graph partitioning problem

3.1 The label mapping task

Recall that diarization system combination involves a set ofK input hypotheses U1, . . . , UK , which needs to
be mapped to a single diarization output Û , such that this combination optimizes the error on some unknown
metric. To achieve this, the hypotheses must first bemapped to a common label space. Formally, the objective
of “label mapping” is to find a set of N speaker labels {û1, . . . , ûN} for our combined output Û , and a
mapping function S that takes as input one of the speaker labels from the given hypotheses and maps it to a
label in the combined output, i.e., S(uckk ) = ûn.

For example, suppose we have two diarization hypotheses U1 and U2, and they assign speaker labels
(u1

1, u
2
1) and (u1

2, u
2
2, u

3
2), respectively, for a recordingR. Then, a label mapping function S may produce the

mapping shown in Table 1.
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Table 1: An example of label mapping for 2 hypotheses.

Hypothesis Original label Mapped label

U1
u1

1 A
u2

1 B

U2

u1
2 B
u2

2 C
u3

2 A

Figure 3: Illustration of the label mapping problem as a graph G for the case ofK = 3. V1 denotes the clique formed
by vertices (u11, u

2
2, u

3
3). ∆(u) represents the segments where speaker u is active in the recording.

Here, the speaker labels u1
1 and u3

2 are mapped to the same final speaker C (and similarly for u2
1 and u1

2).
After this mapping, the hypothesesU1 andU2 are in the same label space (A,B,C), and so a majority voting
can be performed. In the next section, we will present a reformulation of this task as a graph partitioning
problem.

3.2 Problem formulation

Again, consider K diarization hypotheses U1, . . . , UK , containing c1, . . . , ck speakers, respectively, such
that C = max{ck, k ∈ [K]}. Let us denote each speaker as a node, i.e., uik is the node corresponding to
the ith speaker in the kth hypothesis, and V = {uik} is the set of all speaker nodes. Let E = {(uik, u

j
κ) :

∀k, κ ∈ [K], i ∈ Uk, j ∈ Uκ, k 6= κ} denote the set of all edges. Informally, this means that there is an edge
between any two nodes if the nodes belong to different hypotheses. Additionally, we have a weight function
w : e→ R+, where e denotes an edge. In practice, these edge weights are obtained by computing the relative
overlap duration between the speakers in the recordings, i.e.,

w(uik, u
j
κ) =

∆(uik) ∩∆(ujκ)

∆(uik) ∪∆(ujκ)
, (3)

where ∆(u) is the set of all segments where speaker u is active in the recording. Clearly, w : E → [0, 1],
and a higher w means that the corresponding speakers are more likely to occur in the same segments in the
recording (i.e., they are more likely to represent the same speaker).

We define the graph as G = (V,E,w). It is easy to see that G is K-partite, and if ck = C, ∀k ∈ [K],
then it is also complete. Fig. 3 illustrates this graphical formulation of the label mapping problem.
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Table 2: Notations used in the paper.

Symbol Definition

U1, . . . , UK Diarization hypotheses
ck Number of speakers in hypotheses k
C Maximum number of speakers in any hypothesis
uik Speaker i in hypothesis k
V Set of all hypotheses speakers
E Set of all edges {(uik, u

j
κ)}

we Weight on edge e = {(uik, u
j
κ)}

(V1, . . . , VC) Clique set (output of label mapping)
G Graph formed by vertex set V and edge set E with weights w

Each Uk in the graph is an independent set (set of vertices with no edges between any pair), and the label
mapping problem can be defined as: partition V into C vertex-disjoint cliques Φ = (V1, . . . , VC), such that
the partition maximizes

J(Φ) = w(Φ) =
∑
c∈C

w(Vc) =
∑
c∈C

∑
e∈E(Vc)

w(e), (4)

where E(Vc) represents edges in the sub-graph induced by Vc. Intuitively, the objective maximizes the sum
of all edge weights within the cliques. The partition is orthogonal since it may contain at most 1 vertex from
every Uk. Table 2 summarizes these notations.

It may not immediately be clear why maximizing the objective in (4) provides an optimal label mapping.
Since the partition is orthogonal, each Vc may represent a mapped speaker label. By maximizing the total
edge weights within cliques, we maximize the total relative overlap between speaker turns for speakers that
are mapped to the same label.

3.3 Empirical validation for the objective

The objective we are trying to maximize in (4) maximizes the total relative overlap between speakers mapped
to the same label. However, diarization systems are actually evaluated using the diarization error rate (DER)
metric, which is computed as:

DER =
Missed speech(MS) + False alarm(FA) + Speaker confusion(CF )

Total reference speaking time(T )
. (5)

If we divide the recordingR into S regions (where no speaker changes occur within a region), the compo-
nents of the DER between the reference and the hypotheses can be computed using the following equations.
Suppose, for any region s, Nref (s) and Nhyp(s) denote the number of speakers estimated by the reference
and the hypotheses, respectively, and Ncorrect(s) denotes the number of correctly identified speakers.

1. Missed speech: fraction of scored time that a hypothesized non-speech segment corresponds to a
reference speaker segment. It can be expressed as

MS =
1

T

S∑
s=1

dur(s)(max(0, Nref (s)−Nhyp(s)))

2. False alarm: fraction of scored time that a hypothesized speaker is labelled as a non-speech in the
reference. It can be formulated as

FA =
1

T

S∑
s=1

dur(s)(max(0, Nhyp(s)−Nref (s)))
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Figure 4: Partition weight w(Φ) versus diarization error rate (DER) for three arbitrarily chosen recordings from the
AMI evaluation set, showing that DER tends to improve with weight.

3. Speaker confusion: fraction of scored time that a speaker ID is assigned to the wrong speaker. It is
computed as

CF =
1

T

S∑
s=1

dur(s)(min(Nref (s), Nhyp(s))−Ncorrect(s))

Since the reference and hypotheses have speaker labels in different label spaces, they are first aligned
using the Hungarian algorithm [Kuh55], which solves a linear sum assignment problem. 1 It is hard to
demonstrate a theoretical correspondence between the objective in (4) and the DER metric. However, we
empirically demonstrate a correspondence using some recordings from the AMI dataset in Fig. 4. We note
from the figure that as the objective (x-axis) improves, the DER decreases, suggesting that our proposed
objective is a good proxy for minimizing the final DER.

3.4 G is a Turán graph

In this section, we show that the graph G constructed in § 3.2 is a Turán graph, and in particular, it is
T (CK,K). First, we define a Turán graph below.

The Turán graph T (n, r) is a complete multi-partite graph formed by partitioning a set of n vertices
into r subsets, with sizes as equal as possible, and connecting two vertices by an edge if and only if they
belong to different subsets.

Lemma 3.1. Every graph G is equivalent to some T (CK,K) Turán graph, i.e., it is equivalent to a complete
K-partite graph KC,C,C,....

Proof. Given G, if all independent sets Uk contain exactly C nodes, then the statement is trivially true.
Otherwise, for any Uk containing ck < C nodes, we add C − ck dummy nodes to Uk, and connect each
dummy node with vertices in all other independent sets. We assign weight 0 to all the newly added edges.
Let us call this complete graph G′. It is easy to see that G′ is T (CK,K) since it containsCK vertices divided
equally intoK subsets (each independent set is such a subset). Now, we only need to show that any solution
Φ for the graph G is equivalent to some solution Φ′ to G′.

1Our first algorithm for label mapping is motivated by this application of the Hungarian algorithm, and is described in § 5.
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Algorithm 1: DOVER-Lap label mapping
Input: Graph G = (V,E,w)
Output: Partition Φ = V1, . . . , VC

1 Φ = {}
/* Loop until no vertices remaining */

2 while V 6= φ do
/* Enumerate all maximal cliques */

3 S = set of all maximal cliques in V
/* Get maximum weighted clique */

4 Vc = max(S, key=
∑

e∈Si
w(e))

/* Add clique to partition */

5 Φ = Φ ∪ {Vc}
/* Remove clique vertices from V */

6 V = V \ {Vc}

Suppose Φ maximizes the objective in (4) for graph G. Clearly, Φ must contain exactly C cliques, and
each clique has size at mostK. We can extend Φ to Φ′ by incrementally adding dummy nodes to the cliques
until they become maximal. Since all the added edges are zero-weighted, w(Φ′) = w(Φ).

Similarly, if we have a solution Φ′ for G′, we can obtain a solution Φ for G with the same total weight by
simply removing the dummy nodes from all the cliques in Φ′.

Lemma 3.2. G has an exponential number of maximal cliques.

Proof. The proof is through a simple combinatorial argument. Since G is a complete K-partite graph, any
maximal clique of G contains exactly 1 vertex from all its K independent sets. Since each independent set
has C vertices, there are CK possibilities for a maximal clique.

4 The DOVER-Lap label mapping algorithm

Before we propose new algorithms for label mapping, we analyze a previously proposed method in the graph-
ical framework from § 3.2, and show that it is exponential in the input size. Algorithm 1 presents the label
mapping algorithm proposed earlier as part of the DOVER-Lap algorithm [RGPH+21]. Note that the al-
gorithm has been reformulated in terms of the graph problem we described earlier. The algorithm roughly
follows the following steps after the graph construction.

1. Enumerate all the maximal cliques in G. Let this set be denoted by S.

2. Find the clique Vc with the maximum weight in S.

3. Add Vc to the partition Φ. Remove the vertices in Vc from G and the associated edges.

4. Repeat from Step 1 until no vertices remain in G.

While this method leads to strong diarization performance by the ensemble, it has a glaring problem —
it is exponential in the number of input hypotheses, since there are CK maximal cliques in the graph (for
K hypotheses and a maximum of C speakers per hypothesis), which we have to compute at line 3 of the
algorithm. This is a direct consequence of Lemma 3.2.

Theorem 4.1. The DOVER-Lap label mapping algorithm (Algorithm 1) has time complexityO(CK), where
K is the number of input hypotheses and C is the maximum number of speakers in any hypothesis.
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Figure 5: Label mapping time (in ms) for combining different number of hypotheses on the AMI and LibriCSS data.
The y-axis is logarithmic.

Proof. From Lemma 3.2, since G hasCK maximal cliques, it takes at leastO(CK) time to simply enumerate
all the cliques, as is required in the first step of the algorithm. Hence, the mapping algorithm has complexity
exponential in the size of the input.

Due to this exponential dependency, the algorithm quickly becomes computationally intractable, as
shown in Fig. 5. We computed the label mapping time for an increasing number of input hypotheses for
the AMI and LibriCSS evaluation sets. For AMI (which contains 4 speakers; solid green line), the algorithm
became infeasible beyond K = 10. For LibriCSS (which contains 8 speakers; dotted green line), this limit
was reached for an even smaller value of K, making combination impossible beyond 7 hypotheses. As a
comparison, we also show (in blue) the mapping time for the greedy Hungarian algorithm we will describe
later in § 5.

In the following sections, we will describe our proposed algorithms for label mapping, and derive approx-
imation ratios for them. In all our derivations, we will use the multiplicative definition of approximation ratio,
i.e., for a maximization problem, we say an algorithm is α-optimal if it generates solutions with objective
value at least 1

α of the optimal value, for any instance of the problem.

5 Greedy Hungarian mapping

Our first algorithm greedily combines independent sets in pairs using the Hungarian algorithm for linear sum
assignment. Let us first set up some terminology and describe some sub-methods that will be used in the
algorithm.

5.1 Definitions

Consider the subgraph Gij induced by considering all the vertices in sets Ui and Uj , where Ui and Uj are two
independent sets in G. By construction, such a subgraph Gij is a complete bipartite graph. For our graphical
formulation, we define a local and global mapping as follows.

• A local label mapping ψ is a matching on the bipartite graph Gij .

• A global label mapping Ψ is a function that assigns a vertex uik in the independent set Uk to any one
of the final cliques Vc.
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Our algorithm works by incrementally constructing the global label mapping using the local maps be-
tween pairs of independent sets. The local mapsψ are computed using the Hungarian method as a subroutine,
which is described in the next section. We develop the following terminology to describe this method. For
the sake of brevity, we drop the subscript ij for the bipartite graph Gij , and just refer to it as G by abuse of
notation.

A labeling of G is a function l : V → R such that

∀{u, v} ∈ E, l(u) + l(v) ≥ w(u, v).

An equality subgraph is a subgraph Gl = (V,El) ⊆ G = (V,E), fixed on labeling l, such that

El = {(u, v) ∈ E : l(u) + l(v) = w(u, v)}.

Lemma 5.1 (The Kuhn-Munkres theorem). Given labeling l, if ψ is a perfect matching on Gl, then ψ is a
maximum-weight matching on G.

Proof. Let ψ′ be any perfect matching in G. By definition of a labeling function, and since ψ′ is perfect,

w(ψ′) =
∑

(u,v)∈ψ′
w(u, v) ≤

∑
(u,v)∈ψ′

l(u) + l(v) =
∑
v∈V

l(v).

This means that
∑

v∈V l(v) is an upper bound for any perfect matching ψ′ of G. Now, let us consider ψ.

w(ψ) =
∑

(u,v)∈ψ

w(u, v) =
∑

(u,v)∈ψ

l(u) + l(v) =
∑
v∈V

l(v) ≥ w(ψ′).

Thus, ψ is a maximum-weight matching in G.

Finally, given a bipartite graph G and a matching ψ, the graph is said to contain an alternating path if
there exists a path in the graph which has alternating edges in ψ. An augmenting path is a path in such a
graph which has its endpoints (start and end vertices) unmatched (i.e., not in the matching).

5.2 The Hungarian method

An important component of our algorithm is the Hungarian method for computing the maximum-weighted
matching in bipartite graphs, due to Kuhn and Munkres [Kuh55,Mun57]. In our algorithm, we use this as a
subroutine to compute the local label mapping ψ In this section, we describe the algorithm and prove that it
returns a maximum bipartite matching in O(n3) time.

The idea behind the algorithm is to find a perfect matching on some labeling l on an equality subgraph,
and use Lemma 5.1 to claim that it is a maximum-weighted matching on G. To achieve this, we start with an
empty matching ψ = φ and a valid l given as

l ::= ∀x ∈ X, y ∈ Y : l(y) = 0, l(x) = max
y′∈Y

w(x, y′)

We then repeat the steps of augmenting the matching and improving the labeling, until we obtain a perfect
matching. These two steps are outlined below.

5.2.1 Augmenting the matching

Given Gl and some matching ψ, we find an unmatched vertices u, v ∈ V such that there is an augmenting
path α from u to v. If such a pair of vertices exist, we create this augmenting path and flip the edges in the
matching, i.e., we replace the edges in ψ with edges in the augmenting path that are in El \ ψ. This process
increases the size of the matching, since we added previously unmatched vertices.
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Algorithm 2: Hungarian label mapping
Input: Graph G = (V,E,w), U = {U1, . . . , UK}
Output: Partition Φ = V1, . . . , VC

1 Ψ = {} /* Global label map */

2 υ = U1

3 for k in [2,K] do
/* Compute local map */

4 ψ = Hungarian(υ, Uk)
/* Merge pair w.r.t. local map */

5 υ = Merge(υ, Uk, ψ)
/* Update global map */

6 Ψ = Update(Ψ, ψ)
/* Compute partition using global map */

7 Φ = Partition(U ,Ψ)

5.2.2 Improving the labeling

Let S ⊆ X and T ⊆ Y represent the set of vertices on either side of an “almost” augmenting path in ψ.
Let Nl(S) = {v : ∀u ∈ S, (u, v) ∈ El}. If Nl(S) = T , then we cannot increase the alternating path and
augment, so we must improve the labeling.

Let δl = minu∈S,v /∈T (l(u) + l(v)− w(u, v)). We improve l to l′ as

l′(r) =


l(r)− δl if r ∈ S,
l(r) + δl if r ∈ T,
l(r) otherwise.

(6)

It is easy to show that l′ is a valid labeling by examining all modified edges.
Using the two subroutines of augmenting and improving described above, the Hungarian method iterates

until ψ is a perfect matching for Gl.

Lemma 5.2. The Hungarian method runs in O(n3) time, where n is the number of vertices in G.

Proof. Each of the subroutines of augmenting the matching and improving the labeling increases the size of
the matching by 1 edge. Since there can be at most n2 edges in a matching, it takesO(n) rounds. Augmenting
the matching requiresO(n) time to find the right vertex, if one exists, and anotherO(n) to flip the matching.
Improving the labeling also requires O(n) to find δl. However, it can occur O(n) times if no augmenting
path is found, therefore it requiresO(n2) steps in a single round. Hence, the total running time isO(n3).

5.3 Algorithm

We now describe the whole algorithm for label mapping in Algorithm 2. The algorithm starts with a pair of
hypotheses (independent sets), and computes a matching (local map) for them using the Hungarian method
described in the previous section. It then merges the pair w.r.t. the map ψ. This merge operation is described
next.

Let Gij be a bipartite graph induces from the graph G by considering the independent sets Ui and Uj ,
as described earlier. Let ψ be a matching on Gij , s.t. ψ = {u1v1, u2, v2, . . . , uC , vC}, where uc ∈ Ui and
vc ∈ Uj . We merge Uj with Ui by identifying the vertex pairs vc with uc. By Lemma 3.1, we can assume
that we have performed graph completion on G and so there are no unmatched vertices. Let Ui(j) denote the
new vertex set. We remove the loops and edges within Ui(j), and replace multiple edges by a single edge
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with weight equal to the sum of weights of the edges it is replacing. The new weighted graph (Gi(j), w′) is
called the merge of Uj to Ui from G along ψ. Clearly, Gi(j) is a (k-1)-partite graph.

In each iteration of the algorithm, we reduce the number of independent sets by 1 because of this merge
operation. Furthermore, after every merge, we update the global mapping Ψ using the local map ψ. This
process simply involves creating a transitive map of the formψK(. . . (ψ2(ψ1(·)) by composing the local label
mappings at each iteration.

Theorem 5.3. Algorithm 2 runs in polynomial time.

Proof. FromLemma 5.2, each iteration of the loop runs inO(C) time, and there are a total ofK−1 iterations.
Hence, the algorithm finishes in O(CK) time.

Theorem 5.4. Algorithm 2 is a 1
c -approximation for the label mapping problem.

Proof. By Lemma 3.1, W.L.O.G, suppose G is complete. First we will show, by induction onK, thatw(Φ) ≥
w(G)
C . ForK = 2, G is bipartite, so the Hungarianmethod provides an optimal solution, i.e., Ψ is a maximum-

weighted matching of G. Since there areC! perfect matchings in G and each edge appears in exactly (C−1)!
of these matchings, we have

average weight of matching =

∑
e∈E w(e)(C − 1)!

C!
=

∑
e∈E w(e)

C
=
w(G)

C
.

Since the Hungarian method returns the maximum-weight matching, we have

w(Φ) ≥ w(G)

C
.

For the inductive case, suppose the statement holds for some K − 1. Let ψ1 be the matching in the first
iteration (i.e., between U1 and U2), and Φ′ be the remaining matching. Let G′ be the graph obtained after the
first merge operation. Then, by applying the statement on ψ1 and Φ′, we have

w(Φ) = w(ψ1) + w(Φ′) ≥ 1

C

∑
e∈[U1,U2]

w(e) +
w(G′)
C

=
1

C

 ∑
e∈[U1,U2]

w(e) +
∑

e/∈[U1,U2]

w(e)

 =
w(G)

C
.

Now suppose Φ∗ is an optimal solution. Then, since w(Φ∗) ≤ w(G), we have

w(Φ)

w(Φ∗)
≥ w(Φ)

w(G)
≥ 1

C

=⇒ w(Φ) ≥ w(Φ∗)

C
.

Hence, the algorithm is a 1
C -approximation.

6 Randomized local search

In this section, we will develop a randomized algorithm using local search which obtains a better approxi-
mation in expectation compared with the greedy Hungarian algorithm described earlier. We use the same
graphical formulation that was developed previously, so we do not repeat the construction here. We will
present a deterministic local search algorithm to understand the concept of local improvements in this set-
ting, and then extend it to a randomized version.
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6.1 Preliminary: deterministic local search

Again, W.L.O.G., we will assume that we have a complete graph G, i.e., all the independent sets have exactly
C vertices. The algorithms and analysis can be easily extended to the more general case without breaking
any guarantees, due to Lemma 3.1. Let us first define the concepts of a feasible partition, an exchangeable
pair, and neighborhood of a partition.

• A partition Φ of G is called feasible if it divides the graph into exactly C cliques, each of sizeK.

• A pair of vertices ui and uj are called exchangeable if both ui and uj belong to the same Uk for some
k ∈ [K].

• A neighbor Φ′ of a partition Φ is a partition that can be obtained by swapping an exchangeable pair in
Ψ. We denote the neighborhood of Φ by N(Φ).

With this terminology, we can now define local optimum for the label mapping problem. We say that a
feasible partition Φ is a local optimum for label mapping if w(Φ) ≥ w(Φ′) for any Φ′ ∈ N(Φ).

Lemma 6.1. For any feasible partition Φ,

|N(Φ)| = K ·
(
C

2

)
.

Proof. To obtain a neighbor of a partition, we first choose a set Uk inK ways, and then choose an exchange-
able pair in Uk in

(
C
2

)
ways. Thus, there are a total ofK ·

(
C
2

)
neighbors.

Lemma 6.2. For any feasible partition Φ, we have

1

|N(Φ)|
∑

Φ′∈N(Φ)

(
w(Φ′)− w(G)

C

)
=

(
1− 2C

|N(Φ)|

)(
w(Φ)− w(G)

C

)
.

Proof. Consider some neighbor Φ′ of Φ, obtained by swapping the exchangeable pair (ui, uj) in the inde-
pendent set Uk. Suppose that ui and uj were originally in the cliques Vi and Vj , respectively. This means
that after swapping, in the partition Φ′, ui is in Vj and uj is in Vi.

If we consider the changes from Φ to Φ′ in terms of edge weights, we removed the edges from ui to
all other vertices in Vi (and similarly from uj to all other vertices in Vj), and added edges from ui to other
vertices in Vj (and similarly for uj to other vertices in Vi). By slight abuse of notation, suppose w(Vi \{ui})
denotes the sum of all edge weights in Vi excluding the node ui. Then, we have

w(Φ′)− w(Φ) =

 ∑
u∈Vj\{uj}

w(ui, u) +
∑

u∈Vi\{ui}

w(uj , u)


−

 ∑
u∈Vi\{ui}

w(ui, u) +
∑

u∈Vj\{uj}

w(uj , u)


Summing over all neighbors Φ′ of Φ, we get

∑
Φ′∈N(Φ)

(
w(Φ′)− w(Φ)

)
=

∑
Φ′∈N(Φ)

( ∑
u∈Vj\{uj}

w(ui, u) +
∑

u∈Vi\{ui}

w(uj , u)
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−
∑

u∈Vi\{ui}

w(ui, u)−
∑

u∈Vj\{uj}

w(uj , u)

)
= 2

∑
ci,cj∈[C]

w(E(Vci , Vcj ))− 2(C − 1)
∑
c∈[C]

w(E(Vc)),

whereE(Vci , Vcj ) denotes the set of edges going between cliquesVci andVcj in the partitionΦ, andE(Vc) de-
notes the edges inside the cliqueVc. Sincew(Φ) =

∑
c∈[C]w(E(Vc)) andw(G)−w(Φ) =

∑
ci,cj∈[C]w(E(Vci , Vcj )),

we get

∑
Φ′∈N(Φ)

(
w(Φ′)− w(Φ)

)
= 2 (w(G)− w(Φ))− 2(C − 1)w(Φ)

=⇒
∑

Φ′∈N(Φ)

w(Φ′)−
∑

Φ′∈N(Φ)

w(Φ) = 2w(G)− 2(C − 1)w(Φ)

=⇒
∑

Φ′∈N(Φ)

w(Φ′)−K ·
(
C

2

)
w(Φ) = 2w(G)− 2(C − 1)w(Φ)

Finally, subtracting w(G)
C from both sides and dividing by |N(Φ)| (from Lemma 6.1, we obtain

1

|N(Φ)|
∑

Φ′∈N(Φ)

(
w(Φ′)− w(G)

C

)
=

(
1− 2C

|N(Φ)|

)(
w(Φ)− w(G)

C

)
.

We can now give a deterministic local search algorithm for label mapping. Given the graph G, we ini-
tialize a feasible partition Ψ and then follow the steps below.

1. Search N(Φ) until we find Φ′ such that(
w(Φ′)− w(G)

C

)
≥
(

1− 2C

|N(Φ)|

)(
w(Φ)− w(G)

C

)
.

2. Let Φ = Φ′.

3. If w(Φ) < w(G)
C , find a new feasible partition Φ′ ∈ N(Φ) s.t. w(Φ′) > w(Φ). Let Φ = Φ′.

We repeat these steps until we find Φ such that w(Φ) ≥ w(G)
C . Note that Lemma 6.2 guarantees the

existence of Φ′ satisfying the conditions in both steps 1 and 3.

Theorem 6.3. Starting from an arbitrary initialization, the local search algorithm reaches a feasible parti-
tion Φ with weight w(Φ) ≥ w(G)

C in polynomial number of steps.

Proof. In step 1 of the algorithm, we can find a feasible partition Φ′ in at most |N(Φ)| searches, which is
at most K ·

(
C
2

)
. So we now need to count how many such iterations are required until we obtain a solution

satisfying the stopping criterion.
Let us denote f(Φ) = w(Φ) − w(G)

C , for ease of notation. This means that in step 1, our local im-
provements are of the form f(Φ′) ≥

(
1− 2C

|N(Φ)|

)
f(Φ). Suppose we initialize with a partition Φ0, and the

consecutive partitions obtained in step 1 are Φ1, Φ2, and so on. Then,
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Algorithm 3: Randomized local search
Input: Graph G = (V,E,w)
Output: Partition Φ = V1, . . . , VC

1 Φ = {}
/* Repeat for N epochs */

2 for n in [N ] do
/* Initialize a partition at random */

3 Φ̃ = Random(V )
/* Repeat for M iterations */

4 for m in [M ] do
/* Select edge between cliques */

5 upvq = Sample(E(Φ̃C), p =
w(upvq)

w(Φ̃C)
)

/* Swap incident vertex */

6 Swap up and u′p with probability 1
2

7 Swap vq and v′q with probability 1
2

/* Update if weight increases */

8 Φ = max(Φ, Φ̃)

f(Φi) ≥ f(Φ0)

(
1− 2C

|N(Φ0)|

)i
.

This means that for sufficiently large i, the RHS in the inequality becomes diminishingly small, and
f(Φi) ≥ 0, which is our desired stopping criterion. Otherwise, step 3 of the algorithm will produce a
different feasible solution Φ′ with weight w(Φ′) > w(Φ). We can also solve for i to bound the number of
iterations as logbw(G) + 1, where b = |N(Φ)|

|N(Φ)|−2C , and so i∗ ≤ n lnw(G), which implies that the algorithm
is polynomial if the weights are bounded. In our case, w(G) ≤ |E|, so the algorithm is polytime.

Clearly, the local search algorithm is also a 1
C -approximation, using similar arguments as in Theorem 5.4.

Next, we will present a randomized version of this algorithm that provides a better solution in expectation.

6.2 Extension to randomized case

To improve the approximation ratio of local search, we make two changes. First, instead of arbitrarily select-
ing a neighbor Φ′ of Φ by choosing some exchangeable pair to swap, we make this selection based on some
probability distribution. Second, we repeat the local search process for enough iterations and choose the
solution with the maximum weight. We will show that this process gives us a (1− ε)-approximate solution
with high probability.

First, we describe the selection of an exchangeable pair. Let E(ΦC) denote the complement set of the
matching, i.e., the set of edges which are not in the matching Φ. Let e = (uik, ujκ) denote some edge in
E(ΨC), s.t. uik ∈ Uk and ujκ ∈ Uκ. We select edge e with probability w(e)

w(ΦC)
. This means that a higher-

weighted edge not in the matching is more likely to get selected. Once we have selected an edge e, we choose
either of its incident vertices uik or ujκ with probability 1

2 . If uik is selected, we select a vertex vk ∈ Uk
(vk 6= uik) with uniform probability distribution (and analogously for ujκ). Then, our exchangeable pair is
(uik, vk).

With this selection of exchangeable pair, our entire randomized local search algorithm for label mapping
is shown in Algorithm 3. The local search runs for M iterations, and we repeat the whole process for N
epochs. Finally, we return the partition with the maximum weight among all the N epochs.

15



Theorem 6.4. With probability 1− 1
e , Algorithm 3 returns a (1− ε)-approximate solution for

N =
(C!)K−1

(1 + ε2/(4(C − 1)2(1− ε)2))C(K−1)

and M = C(K − 1) · (C!)K−1

(1 + ε2/ (4(C − 1)2(1− ε)2))C(K−1)
.

Proof. Consider an optimum partition ΦOPT with weight l. If, at some moment, w(Φ) = u ≥ (1− ε)l, then
we are done; otherwise w(Φ) = u < (1 − ε)l. Let ΦC

OPT and ΦC denote the complement edge sets of the
optimal partition and the current partition, respectively. We have,

u < (1− ε)l
=⇒ w(G)− u > w(G)− (1− ε)l
=⇒ w(ΦC) > (w(G)− l) + εl

=⇒ w(ΦC) > w(ΦC
OPT ) + εl

=⇒ w(ΦC)− w(ΦC
OPT ) >

εu

1− ε
.

We note that any edge in the set ΦC \ ΦC
OPT is wrongly assigned, since it is present within cliques in

the optimal partition. If such an edge is selected in line 5 of the algorithm, then the algorithm would correct
it with probability 1

2 ×
1

C−1 . Since each edge is chosen with probability w(e)
w(ΦC)

, the probability that the
algorithm corrects at least one wrong entry is

∑
e∈ΦC\ΦC

OPT

1

2(C − 1)

w(e)

w(ΦC)
=

1

2(C − 1)

w(ΦC \ ΦC
OPT )

w(ΦC)

>
1

2(C − 1)

εu

(1− ε)u

=
ε

2(C − 1)(1− ε)
.

Suppose in some epoch, we choose a initial partition Φ with tk wrongly assigned vertices in set Uk, for
2 ≤ k ≤ K (i.e., tk vertices are assigned to wrong cliques). This happens with probability

∏K
k=2 pk, where

pk =

{(
C
tk

) (tk−1)!
C! , tk ≥ 2

1
C! tk = 0

For such a partition, the algorithm finds an optimum partition with probability at least

K∏
k=2

(
ε

2(C − 1)(1− ε)

)tk
.

Summing over all possible choices of (t2, . . . , tK), we conclude that the probability of using local search
to find one initial partition is at least

1
(C!)K−1

∏K
k=2

(
1 +

∑K
tk=2

((
K
tk

))
(tk − 1)!

(
ε

2(C−1)(1−ε)

)tk)
≥ 1

(C!)K−1

(
1 + ε2

4(k−1)2(1−ε)2

)C(K−1)
= 1

N
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Since we choose N = (C!)K−1

(1+ε2/(4(C−1)2(1−ε)2))C(K−1) initial independent partitions, the probability of fail
is at most

(1− 1

N
)N <

1

e
.

Hence, we obtain a (1− ε)-approximate solution with probability at least 1− 1
e .

7 Experimental results

We performed experiments on the AMI meeting corpus [CAB+05]. AMI consists of 100 hours of recorded
meetings containing 4 or 5 speakers per session, with speech from close-talking, single distant microphone
(SDM), and array microphones. About 20% of the speech duration contains overlaps, on average. For our
experiments, we used the mixed-headset recordings, which are obtained by summing the individual headset
signals from the participants in themeeting. We combined the diarization outputs from the following overlap-
aware diarization methods.

1. VB-based overlap assignment (VB) [BBGP20]: This method leverages Variational Bayes (VB)-
HMM used originally for diarization in [DBM18]. The model is a Bayesian HMM, in which states
represent speaker specific distributions and transitions between states represent speaker changes. Us-
ing the output of an externally trained overlap detector, overlapping frames are assigned the top two
speakers from the posterior matrix computed using VB inference. We used a single-speaker spec-
tral clustering system to initialize the matrix with hard probabilities [PHKN20], and an oracle speech
activity detector (SAD) to remove non-speech segments.

2. Overlap-aware spectral clustering (SC) [RHK21]: This method also uses an external overlap de-
tector, but unlike VB, overlap assignment happens in the first-pass clustering itself, instead of during
resegmentation. This is done by reformulating spectral clustering as a constrained optimization prob-
lem, and then discretizing it under the overlap constraints. We used the same SAD, x-vector extractor,
and overlap detector for the VB and SC methods.

3. Region proposal networks (RPN) [HWF+20]: It combines segmentation and embedding extraction
into a single neural network, and jointly optimizes them using an objective function that consists of
boundary prediction and speaker classification components. The region embeddings are then clustered
(using K-means clustering) and a non-maximal suppression is applied. For AMI, we trained the RPN
on force-aligned data from the AMI training set; for LibriCSS, it was trained on simulated meeting-
style recordings with partial overlaps generated using utterances from the LibriSpeech [PCPK15] train-
ing set. Since we used K-means clustering, we assumed that the oracle number of speakers for each
recording is known. A post-processing step was applied using oracle SAD segments to filter non-
speech.

For the randomized local search algorithm, we adopted an early stopping method where we stopped the
procedure when the objective function value did not increase for 100 epochs. For the greedy Hungarian
method, we also experimented with sorting the hypotheses in increasing order of average DER with all other
hypotheses before starting the mapping process. For both the algorithms, we used the label voting technique
described in the DOVER-Lap paper [RGPH+21] for the final combination after the mapping stage. We used
spyder2 for DER-based sorting in the Hungarian method, and also for evaluating the final performances.

2https://github.com/desh2608/spyder
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Table 3: Comparison of Hungarian (modified DOVER) and randomized local search label mapping methods. Results
are shown on the AMI evaluation set, in terms of missed speech (MS), false alarm (FA), speaker error (SE), and
diarization error rate (DER). We combined 3 overlap-aware hypotheses: overlap-aware spectral clustering (SC), VB-
based overlap assignment, and regional proposal networks (RPN).

Method MS FA SE DER

Overlap-aware SC [RHK21] 11.48 2.27 9.81 23.56
VB-based overlap assignment [BBGP20] 9.84 2.06 9.60 21.50
Region proposal networks [HWF+20] 9.49 7.68 8.25 25.42

Greedy Hungarian 9.91 2.71 8.56 21.58
+ DER-based sorting 9.79 2.93 8.20 20.92
Randomized local search (RLS) 9.69 3.21 7.84 20.74

Table 3 shows the results for the proposed label mapping algorithms on the AMI evaluation set. We
combined the 3 overlap-aware diarization systems. As expected, RLS outperforms the greedy Hungarian
algorithm, and most of the gains come from lower speaker error (7.84% compared with 8.20%). However,
this difference in performance is fairly small, especially when we consider that the RLS method requires a
longer processing time. This may be because the theoretical bounds are designed to hold in the setting when
the size of inputs is fairly large. In our setting of combining diarization hypothesis, these “large number”
assumptions are violated. Furthermore, improving the objective in (4) is not monotonically related to an
improvement in DER, as seen in Fig. 4.

8 Conclusion

By formulating label mapping as a graph partitioning problem, we showed that the algorithm used previ-
ously in DOVER-Lap is exponential in the input size and becomes intractable as the number of hypotheses
increases. We then proposed two algorithms for this problem— a greedy algorithm based on the Hungarian
method, and a randomized local search algorithm. We derived approximation ratios for both algorithms and
showed that the RLS algorithm obtains a better approximation in expectation. We also demonstrated our
algorithms empirically by combining 3 overlap-aware diarization systems on the AMI meeting data, where
they outperformed the single best system.
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