VoiceBox: Text-Guided Multilingual **Universal Speech Generation at Scale**

Application of Flow Matching for Speech

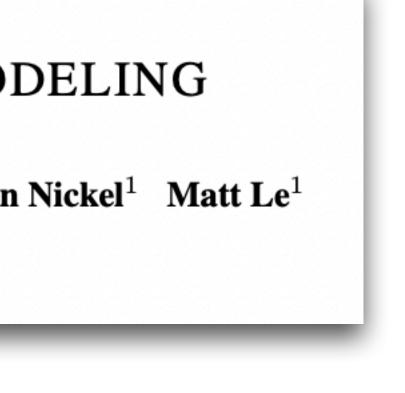
Presenter: Desh Raj September 20, 2023

FLOW MATCHING FOR GENERATIVE MODELING

Yaron Lipman^{1,2} Ricky T. Q. Chen¹ Heli Ben-Hamu² Maximilian Nickel¹ Matt Le¹ ¹Meta AI (FAIR) ²Weizmann Institute of Science

Matthew Le* Apoorv Vyas* Bowen Shi* Brian Karrer* Leda Sari Rashel Moritz Mary Williamson Vimal Manohar Yossi Adi[†] Jay Mahadeokar Wei-Ning Hsu^{*}

June '23: FAIR Accel + some Meta AI folks apply it for speech generation



Feb '23: FAIR Labs folks develop new generative modeling technique

Voicebox: Text-Guided Multilingual Universal Speech Generation at Scale

Meta AI

<u>https://ai.meta.com/blog/voicebox-generative-ai-model-speech/</u>

Outline

- 1. Generative Models and Normalizing Flows
- 2. Continuous Normalizing Flows
- 3. Flow Matching
- 4. VoiceBox

Generative Models and Normalizing Flows

Resources:

- 1. CVPR 2021 tutorial: <u>https://mbrubake.github.io/cvpr2021-nf_in_cv-tutorial/</u>

2. Lilian Weng. Flow-based deep generative models. <u>https://lilianweng.github.io/posts/2018-10-13-flow-models</u>

Generative models Introduction

- A generative model is a probability distribution over random variable ${f X}$ which we attempt to learn from a set of observed data $\{\mathbf{x}_i\}_{i=1}^N$ with some probability density $p_{\mathbf{X}}(x)$ parameterized by θ .
- What do we want from generative models?
 - Evaluating $p_{\mathbf{X}}(x)$ for some x
 - Sampling from $p_{\mathbf{X}}(x)$
 - $p_{\mathbf{X}}(x)$ can be complex data distribution

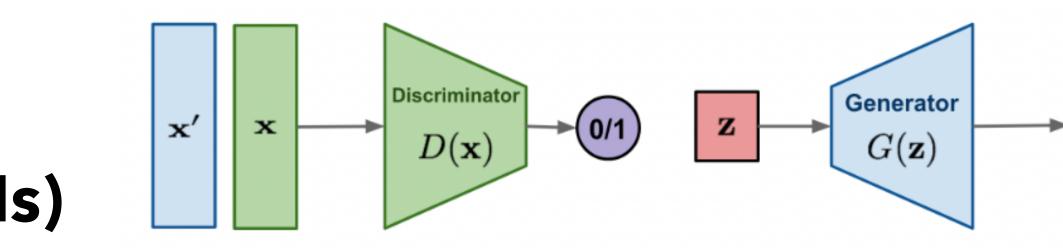
Generative models Gaussian mixture models (GMMs)

- Trained either via maximum likelihood (ML) or a variational bound on likelihood
- What do we want from generative models?
 - Evaluating $p_{\mathbf{X}}(x)$ for some x
 - Sampling from $p_{\mathbf{X}}(x)$
 - $p_{\mathbf{X}}(x)$ can be complex data distribution

Generative models Generative adversarial networks (GANs)

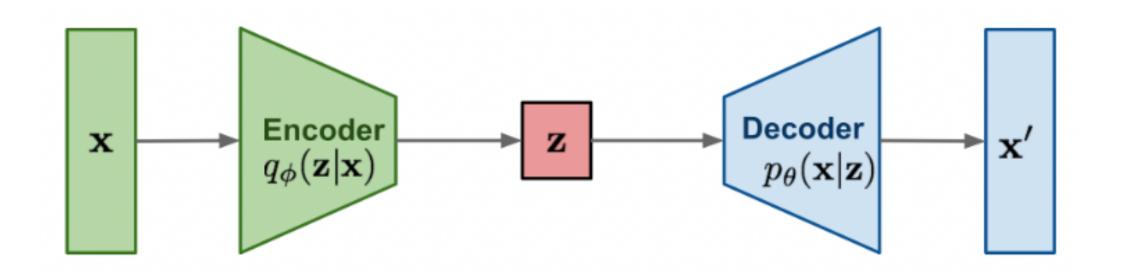
- Trained through an adversarial process (playing a minimax game) —> turns an unsupervised problem into a supervised one.
- What do we want from generative models?
 - Evaluating $p_{\mathbf{X}}(x)$ for some x

- Sampling from $p_{\mathbf{X}}(x)$
- $p_{\mathbf{X}}(x)$ can be complex data distribution \checkmark



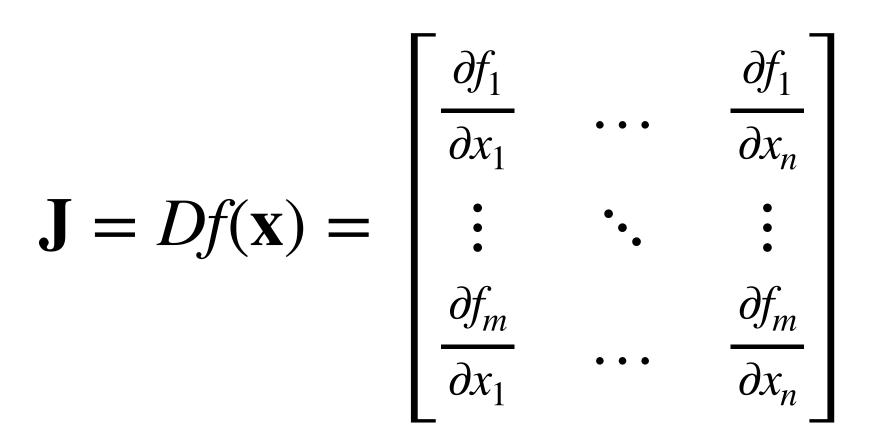
Generative models Variational auto-encoders (VAEs)

- Trained with a bound on maximum likelihood (ELBO)
- What do we want from generative models?
 - Evaluating $p_{\mathbf{X}}(x)$ for some x
 - Sampling from $p_{\mathbf{X}}(x)$
 - $p_{\mathbf{X}}(x)$ can be complex data distribution



Preliminary Jacobian matrix

• $f: \mathbb{R}^n \to \mathbb{R}^m$ is a function. Then the Jacobian of f is the matrix of partial derivatives.

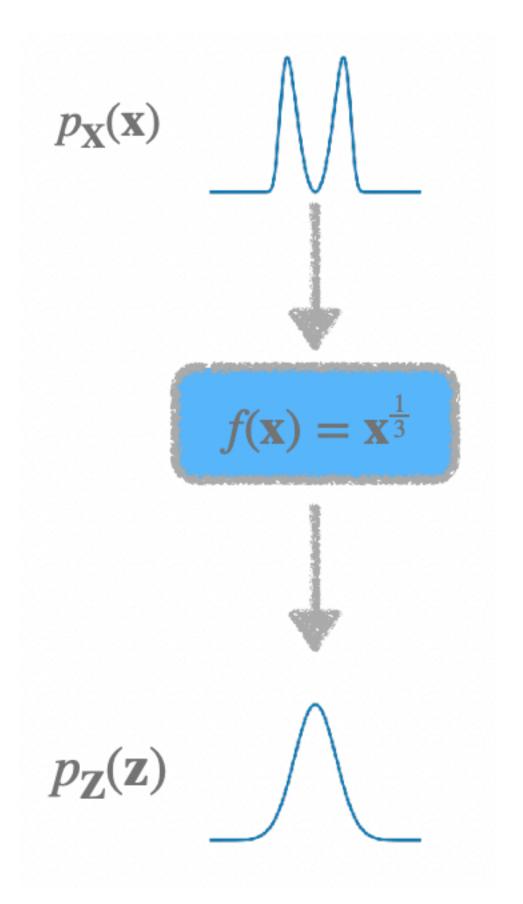


Preliminary **Change of variables**

- Let $p_{\mathbf{X}}(x)$ and $p_{\mathbf{Z}}(z)$ be two distributions over random variables X and Z.
- $\mathbf{Z} = f(\mathbf{X})$ is an invertible, differentiable function.

 $p_{\mathbf{X}}(x) = p_{\mathbf{Z}}(f(x)) |\det Df(x)|$

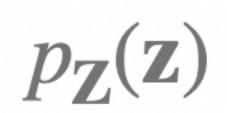
Cool visualization: <u>https://www.youtube.com/watch?v=hhFzJvaY_U</u>

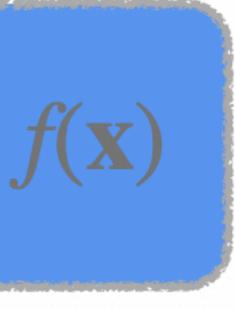


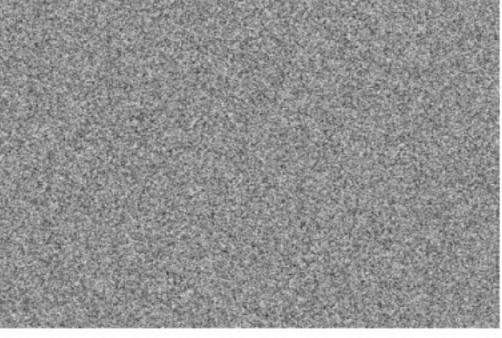
Preliminary **Change of variables**

• Let $p_{\mathbf{X}}(x)$ and $p_{\mathbf{Z}}(z)$ be two distributions over random variables **X** and **Z**. • $\mathbf{Z} = f(\mathbf{X})$ is an invertible, differentiable function.

$p_{\mathbf{X}}(x) = p_{\mathbf{Z}}(f(x)) |\det Df(x)|$

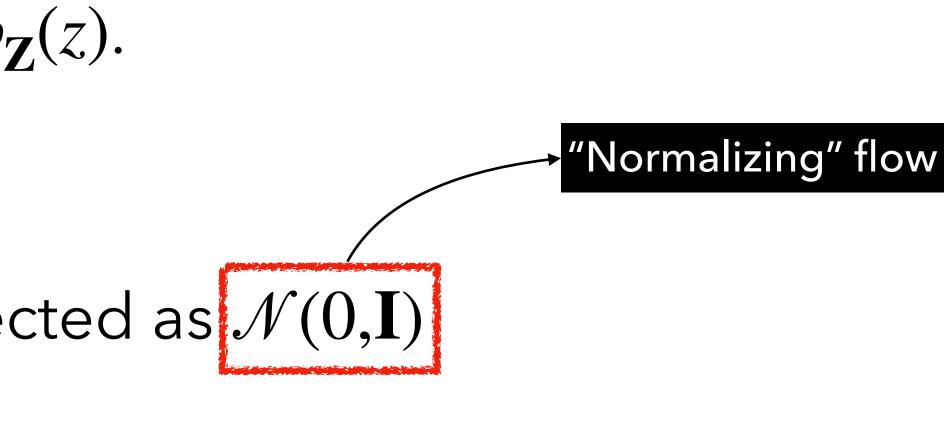






Normalizing flows **Flow function**

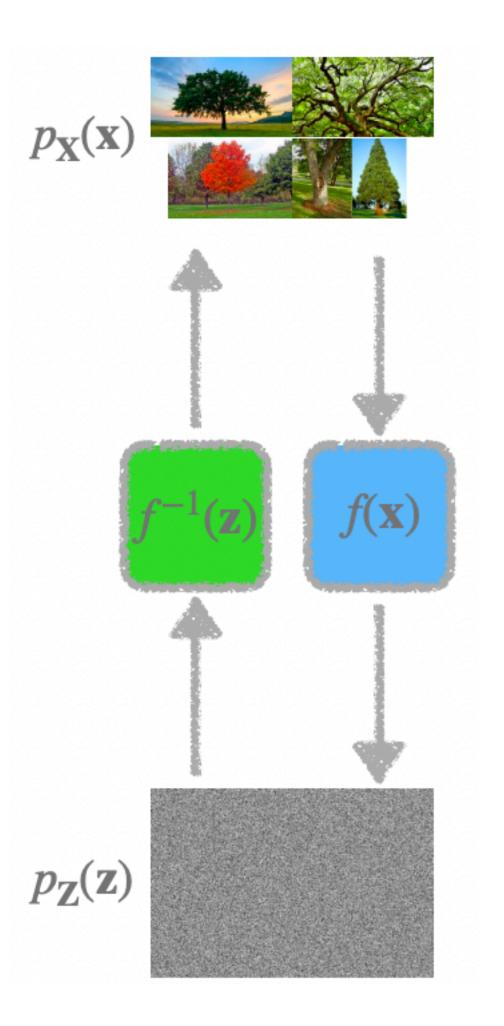
- Learn $f(\mathbf{X})$ to transform $p_{\mathbf{X}}(x)$ into $p_{\mathbf{Z}}(z)$.
- Two components:
 - Base measure: $p_{\mathbf{Z}}(z)$, usually selected as $\mathcal{N}(0,\mathbf{I})$
 - Flow: $f(\mathbf{X})$, must be invertible and differentiable



Normalizing flows Does it satisfy what we want?

- What do we want from generative models?
 - Evaluating $p_{\mathbf{X}}(x)$ for some x $p_{\mathbf{X}}(x) = p_{\mathbf{Z}}(f(x)) |\det Df(x)|$

- Sampling from $p_{\mathbf{X}}(x)$ Sample $\mathbf{z} \sim p_{\mathbf{Z}}(\cdot)$, then compute $\mathbf{x} = f^{-1}(\mathbf{z})$
- $p_{\mathbf{X}}(x)$ can be complex data distribution ?



Normalizing flows Training

• Maximum likelihood (θ are parameters of the flow function)

$$\max_{\theta} \sum_{i=1}^{N} \log p_{\mathbf{X}}(x) = \max_{\theta} \sum_{i=1}^{N} 1$$

$\log p_{\mathbf{Z}}(f(\mathbf{x}_i | \theta)) + \log |\det Df(\mathbf{x}_i | \theta)|$

Normalizing flows What are flows?

- A flow is a parametric function $f(\mathbf{x})$ which:
 - Is invertible
 - Is differentiable
 - Has an efficiently computable inverse and Jacobian determinant $det Df(\mathbf{x})$

Normalizing flows **Composition of flows**

- Invertible, differentiable functions are closed under composition.
- Build up a complex flow from a composition of simple flows.

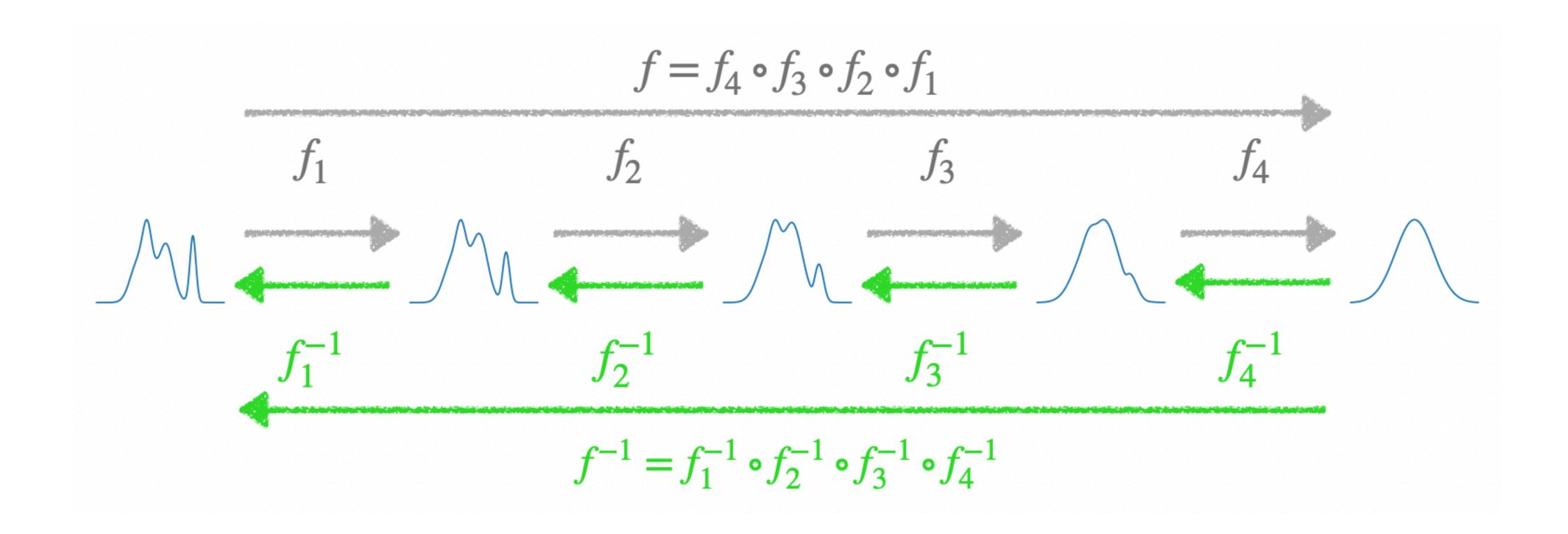
$$f = f_K \circ f_{K-1} \circ \dots \circ f_2 \circ f_1$$

Determinant computation is simple, because

det Df = det

$$\prod_{k=1}^{K} Df_k = \prod_{k=1}^{K} \det Df_k$$

Normalizing flows Composition of flows



Normalizing flows **Reverse flows**

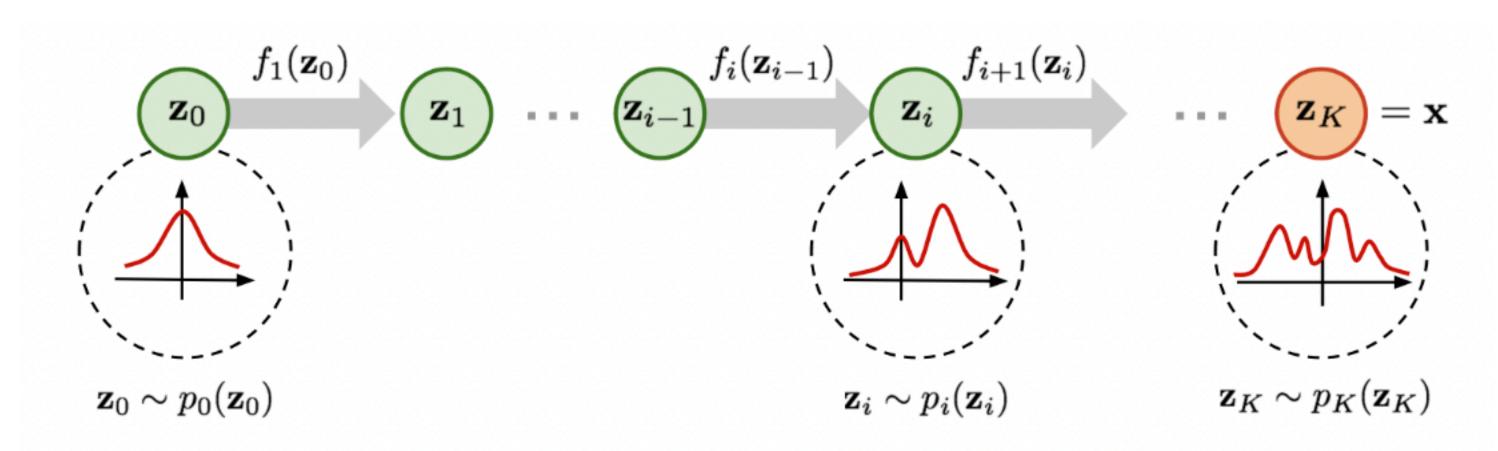


Fig. 2. Illustration of a normalizing flow model, transforming a simple distribution $p_0(\mathbf{z}_0)$ to a complex one $p_K(\mathbf{z}_K)$ step by step.

https://lilianweng.github.io/posts/2018-10-13-flow-models/normalizing-flow.png

• Can also think about flowing from normal distribution to data distribution.

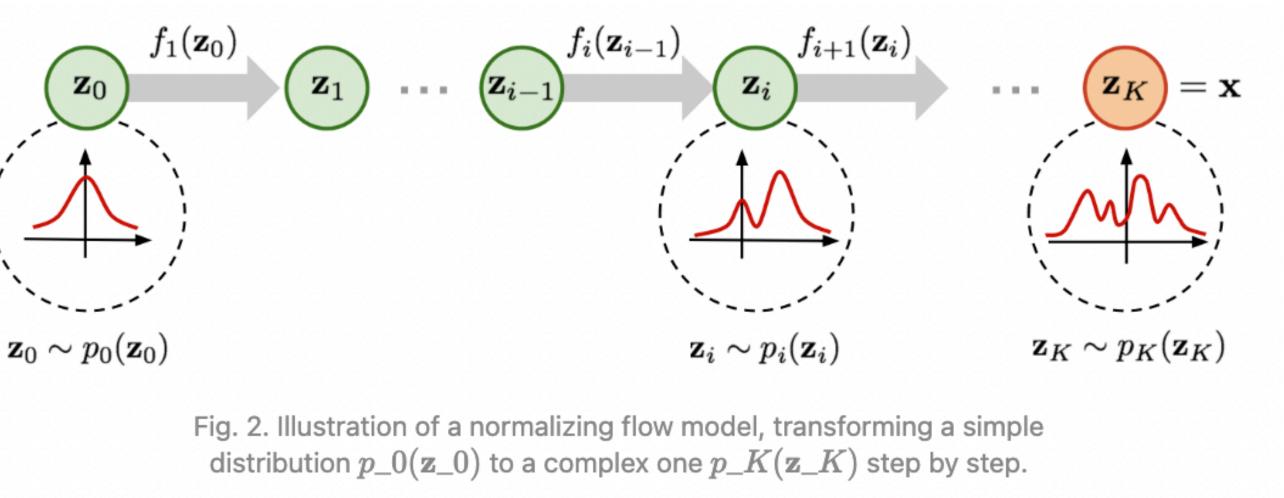
Normalizing flows **Reverse flows**

$$\log p_{\mathbf{X}}(\mathbf{x}) = \log p_{K}(\mathbf{z}_{K}) = \log p_{K-1}(\mathbf{z}_{K-1}) - \log |\det Df_{K}|$$

=
$$\log p_{K-2}(\mathbf{z}_{K-2}) - \log |\det Df_{K-1}| - \log |\det Df_{K}|$$

= ...

 $= \log p_0(\mathbf{z}_0)$



$$f_{0}) - \sum_{k=1}^{K} \log |\det Df_{k}|$$

Normalizing flows Limitations

- A flow is a parametric function $f(\mathbf{x})$ which:
 - Is invertible
 - Is differentiable
 - Has an efficiently computable inverse and Jacobian determinant $det Df(\mathbf{x})$
- It is hard to design flow functions with these constraints!

Continuous Normalizing Flows

Resources:

- 1. Chen, T.Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D.K. (2018). Neural Ordinary Differential **Equations**. Neural Information Processing Systems.
- 2. https://slideslive.com/38917901/neural-ordinary-differential-equations-for-continuous-normalizing-flows

Continuous Normalizing flows From discrete to continuous time steps

Discrete flow

 $z_0 \sim p(z)$

 $z_t = F_t(z_{t-1}; \theta)$

 $x = z_T = F_T \circ \ldots \circ F_1(z_0)$

Continuous flow

 $z_0 \sim p(z)$

 $\frac{dz}{dt} = f(z_t, t, \theta)$ Parameterize "instantaneous" change in state $x = z_T = z_0 + \int^I f(z_t, t, \theta) dt$ J (

Numerical solvers to solve this equation

Continuous Normalizing flows Invertibility

Discrete flow

$$z_0 \sim p(z)$$

$$z_t = F_t(z_{t-1}; \theta)$$

$$x = z_T = F_T \circ \dots \circ F_1(z_0)$$

The functional form of F_t needs to be invertible.

Continuous flow

$$z_0 \sim p(z)$$

$$\frac{dz}{dt} = f(z_t, t, \theta)$$

$$x = z_T = z_0 + \int_0^T f(z_t, t, \theta) dt$$

No constraints on the functional form of f.

Continuous Normalizing flows Change of variables

Discrete flow

 $z_0 \sim p(z)$

 $z_t = F_t(z_{t-1}; \theta)$

 $x = z_T = F_T \circ \dots \circ F_1(z_0)$

$$\log p(x) = \log p(z_T) = \log p(z_0) - \sum_{t=1}^T \log \left| \frac{\partial F_t}{\partial z_t} \right|$$

Jacobian **determinant**: $\mathcal{O}(N^3)$

Continuous flow

$$z_0 \sim p(z)$$

$$\frac{dz}{dt} = f(z_t, t, \theta)$$

$$x = z_T = z_0 + \int_0^T f(z_t, t, \theta) dt$$

$$\log p(x) = \log p(z_T) = \log p(z_0) - \int_0^T \operatorname{Tr} \left[\frac{\partial f}{\partial z_t} \right] dt$$

Trace:
$$\mathcal{O}(N)$$

Continuous Normalizing flows Training

Trained using maximum likelihood,

 $\log p(x) = \log p(z_T) =$

, i.e., maximize
$$\sum_{i=1}^{N} \log p(\mathbf{x}_1 | \theta)$$

$$= \log p(z_0) - \int_0^T \operatorname{Tr} \left[\frac{\partial f}{\partial z_t} \right] dt$$

Continuous Normalizing flows Limitations

- Training is expensive, since we need to use **ODE solvers** at every step!
- Computing the trace is linear if Jacobian is known, but **quadratic** otherwise:
 - Usually replaced with a "stochastic estimator" of the trace

 $\log p(x) = \log p(z_T) =$

$$= \log p(z_0) - \int_0^T \operatorname{Tr} \left[\frac{\partial f}{\partial z_t} \right] dt$$

Flow Matching for Generative Modeling

Resources:

- 1. Lipman, Y., Chen, R.T., Ben-Hamu, H., Nickel, M., & Le, M. (2022). Flow Matching for Generative Modeling. ICLR 2023 (spotlight paper).
- 2. Alex Tong, et al. Improving and Generalizing Flow-Based Generative Models with Minibatch Optimal Transport. <u>https://www.youtube.com/watch?v=UhDtH7Ia9Ag&t=514s</u>

What is Flow Matching? Training objective for continuous normalizing flows

- Suppose p_t(x) is the target probability path (indexed by time-step t) -> think of the "path" of the probability distribution going from normal to data distribution
- We assume that there is some **vector field** $u_t(x)$ which gives rise to this probability path.
- Flow matching tries to directly learn this vector field, i.e.,

$$\mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_t \sim U(0,1) \| v_{\theta}(t,x) - u_t(x) \|^2$$
$$x \sim p_t(x)$$

What is Flow Matching? Training objective for continuous normalizing flows

• Flow matching tries to directly learn this vector field, i.e.,

$$\mathscr{L}_{\mathrm{FM}}(\theta) = \mathbb{E}_t \sim U(x_t)$$

- Problem: $p_t(x)$ and $u_t(x)$ are unknown!
- $(0,1) \| v_{\theta}(t,x) u_t(x) \|^2$ $v_t(x)$

Conditional Flow Matching Solution to the problem

where we condition on the given data:

$$\mathscr{L}_{\text{CFM}}(\theta) = \mathbb{E}_{t} \sim U(0,1) \| v_{\theta}(t,x) - u_{t}(x \mid x_{1}) \|^{2}$$
$$x_{1} \sim q(x_{1})$$
$$x \sim p_{t}(x \mid x_{1})$$

- Now we only need to define $q(x_1)$, $p_t(x | x_1)$, and $u_t(x | x_1)$.

Replace the "marginal" target probability and vector field with conditional,

• The gradients of this loss w.r.t. θ are same as the gradient of original loss.

Conditional Flow Matching Defining the conditional probabilities

$$\mathscr{L}_{\text{CFM}}(\theta) = \mathbb{E}_{t} \sim U$$

$$x_{1} \sim U$$

$$x \sim p_{t}$$

- $q(x_1)$ is set as the uniform distribution over the training data.
- We want a conditional vector field that flows from standard Normal distribution to a Gaussian distribution centered at x_1 with std σ

 $V_{(0,1)} \| v_{\theta}(t,x) - u_t(x \| x_1) \|^2$ $q(x_1)$ $(x | x_1)$

Conditional Flow Matching Defining the conditional probabilities

 We want a conditional vector field that flows from standard Normal distribution to a Gaussian distribution centered at x_1 with std σ

$$p_t(x \,|\, x_1) = \mathcal{N}(x \,|\, tx_1, (t\sigma - t + 1)^2)$$

 $u_t(x | x_1) =$

$$=\frac{x_1-(1-\sigma)x}{1-(1-\sigma)t}$$

Conditional Flow Matching Training loop

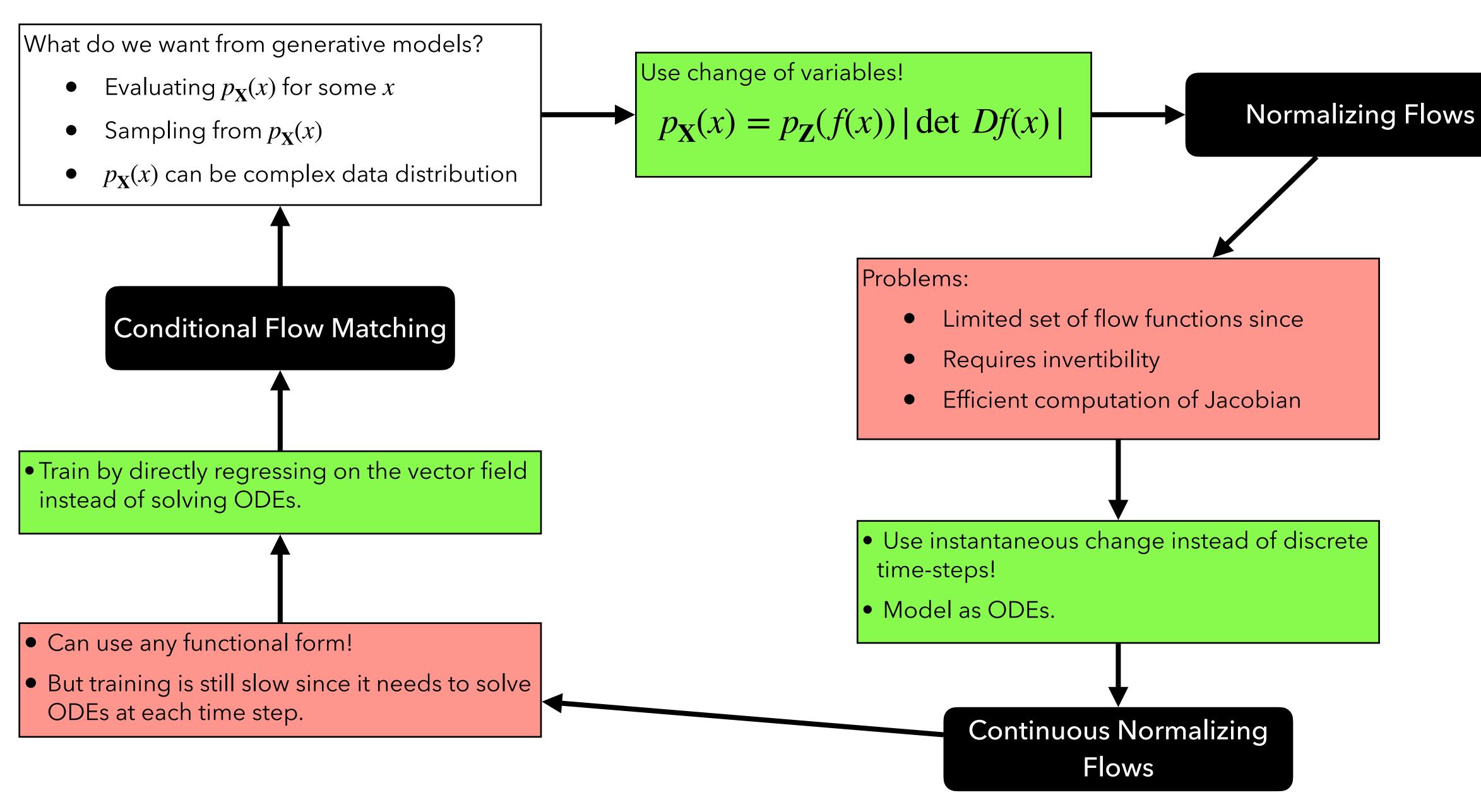
Algorithm 1 Conditional Flow Matching

Input: Efficiently samplable q(z), $p_t(x|z)$, and computable $u_t(x|z)$ and initial network v_{θ} . while Training **do**

 $z \sim q(z); \quad t \sim \mathcal{U}(\theta)$ $\mathcal{L}_{\mathrm{CFM}}(\theta) \leftarrow \| v_{\theta}(t, \theta) \| v_{\theta}(t, \theta)$ $\theta \leftarrow \mathrm{Update}(\theta, \nabla_{\theta})$

return v_{θ}

$$\begin{array}{ll} 0,1); & x \sim p_t(x|z) \\ x) - u_t(x|z) \|^2 \\ \mathcal{L}_{\mathrm{CFM}}(\theta)) \end{array}$$



VoiceBox

Resources:

W. (2023). Voicebox: Text-Guided Multilingual Universal Speech Generation at Scale. ArXiv, abs/ 2306.15687.

1. Le, M., Vyas, A., Shi, B., Karrer, B., Sari, L., Moritz, R., Williamson, M., Manohar, V., Adi, Y., Mahadeokar, J., & Hsu,

Methodology Task

- Task: text-guided speech infilling
- complete text transcript
- Text transcript is provided as frame-level phone alignments

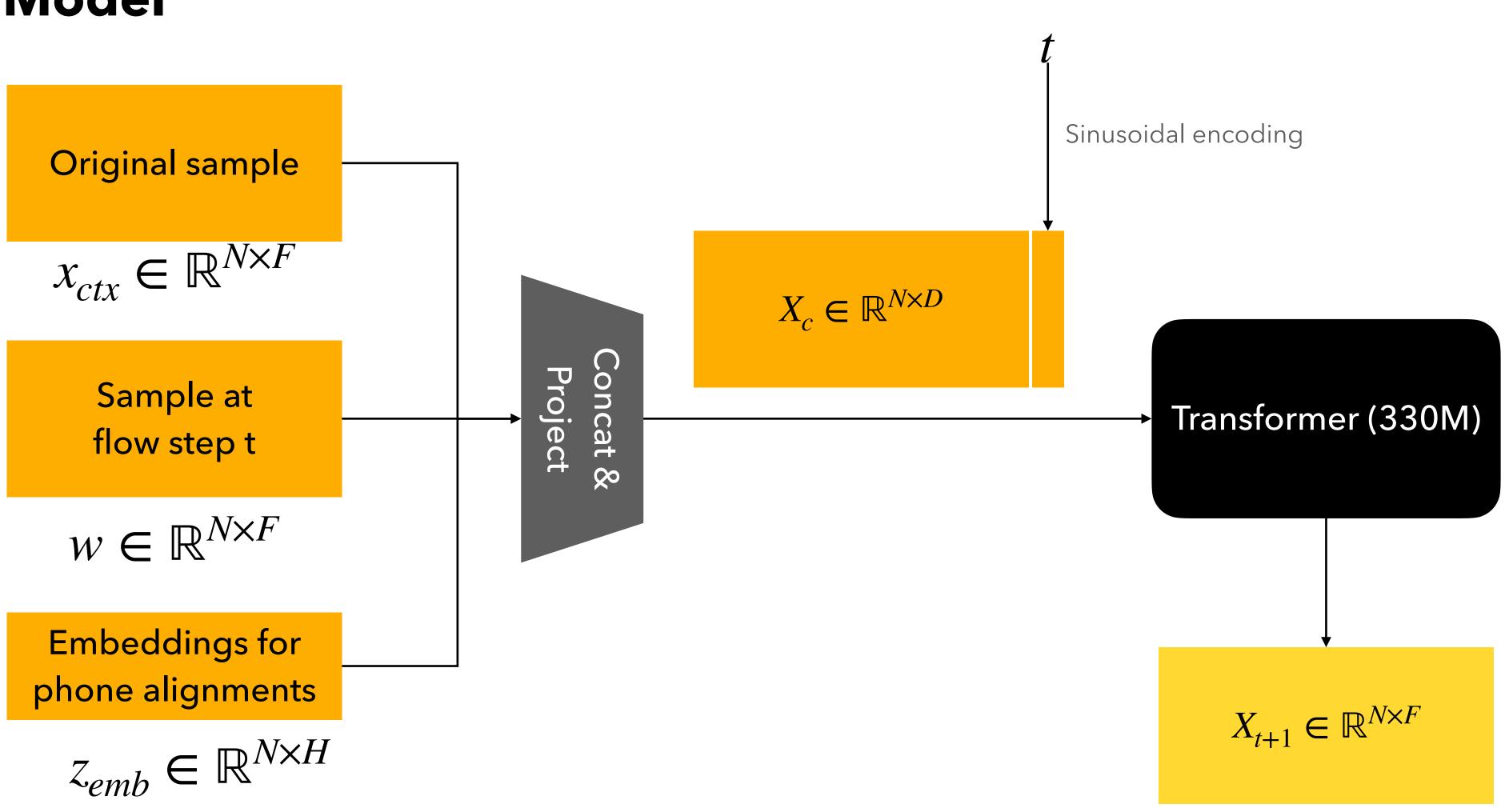
Predict masked segment of speech based on surrounding audio context and

Methodology Model

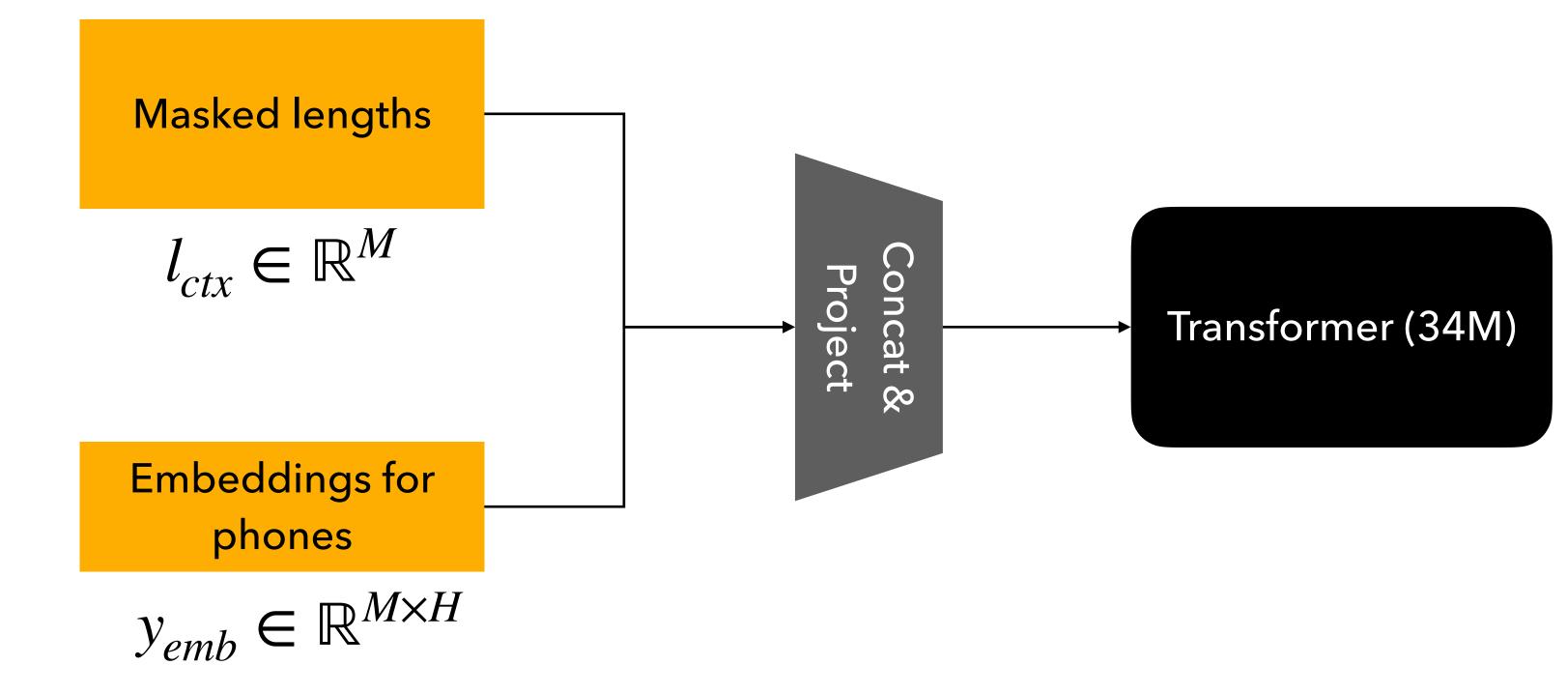
- Model is divided into 2 components:
 - Audio model
 - Duration model
- 100Hz frame rate.
- **Duration model** is a simple regression trained with L1 loss.

• Audio model is a CNF trained on 80-dim log Mel spectrogram extracted at

Methodology Audio Model



Methodology Duration Model (same as FastSpeech)



Methodology Inference

1. Sample x_0 .

2. Use numerical ODE solver to solve the above equation for x.

 $x = x_T = x_0 + \int_0^T f(x_t, t, \theta) dt$

Experiments Setup

- 330M parameter transformer is used for audio model.
- VB-En model trained on 60k hours of audiobooks in English
- VB-Multi trained on 50k hours of audiobooks in 6 languages

Results Monolingual zero-shot TTS

obtain VALL-E continuation SIM result through communication with the authors.

Model	WER	SIM-0	SIM-r	QMOS	SMOS
Ground truth	2.2	0.754	n/a	$3.98 {\scriptstyle \pm 0.14}$	4.01 ± 0.09
cross-sentence					
A3T	63.3	0.046	0.146	-	-
YourTTS	7.7	0.337	n/a	$3.27 {\scriptstyle \pm 0.13}$	$3.19{\scriptstyle \pm 0.14}$
VALL-E	5.9	-	0.580	-	-
VB-En	1.9	0.662	0.681	$3.78 {\scriptstyle \pm 0.10}$	3.71 ± 0.11
continuation					
A3T	18.7	0.058	0.144	-	-
VALL-E	3.8	0.452*	0.508	-	-
VB-En ($\alpha = 0.7$)	2.0	0.593	0.616	-	-

Table 2: English zero-shot TTS results on filtered LS test-clean. "-" results are not available. We

Results Cross-lingual zero-shot TTS

Table 4: Multilingual zero-shot TTS SMOS/QMOS results on filtered MLS English test set with prompts in different languages. YT/VB-Multi refers to YourTTS/multilingual Voicebox. "Ref" shows the audio context language.

	Ref=De	Ref=En	Ref=Es	Ref=Fr	Ref=Pl	Ref=Pt			
	SMOS (target text = En)								
YT	3.26 ± 0.11	$3.24{\scriptstyle \pm 0.11}$	3.22 ± 0.12	$3.48{\scriptstyle \pm 0.10}$	3.26 ± 0.09	$3.38{\scriptstyle \pm 0.11}$			
VB-Multi ($\alpha = 1.0$)	$3.89{\scriptstyle \pm 0.10}$	$3.93{\scriptstyle \pm 0.08}$	$3.84{\scriptstyle \pm 0.10}$	$3.92{\scriptstyle \pm 0.09}$	$3.81{\scriptstyle \pm 0.08}$	$3.96{\scriptstyle \pm 0.09}$			
QMOS (target text = En)									
YT	3.29 ± 0.12	$3.17{\scriptstyle\pm0.13}$	$3.29{\scriptstyle \pm 0.12}$	$3.08{\scriptstyle\pm0.12}$	$3.35{\scriptstyle \pm 0.12}$	$3.21{\scriptstyle \pm 0.12}$			
VB-Multi ($\alpha = 1.0$)	$3.67{\scriptstyle \pm 0.09}$	$3.48{\scriptstyle \pm 0.09}$	$3.45{\scriptstyle \pm 0.11}$	$3.31{\scriptstyle \pm 0.12}$	$3.75{\scriptstyle \pm 0.11}$	$3.35{\scriptstyle \pm 0.13}$			

Results Transient noise removal

- A3T and VB-En use transcript and location of noisy segments.
- VB-En is basically doing infilling rather than denoising.

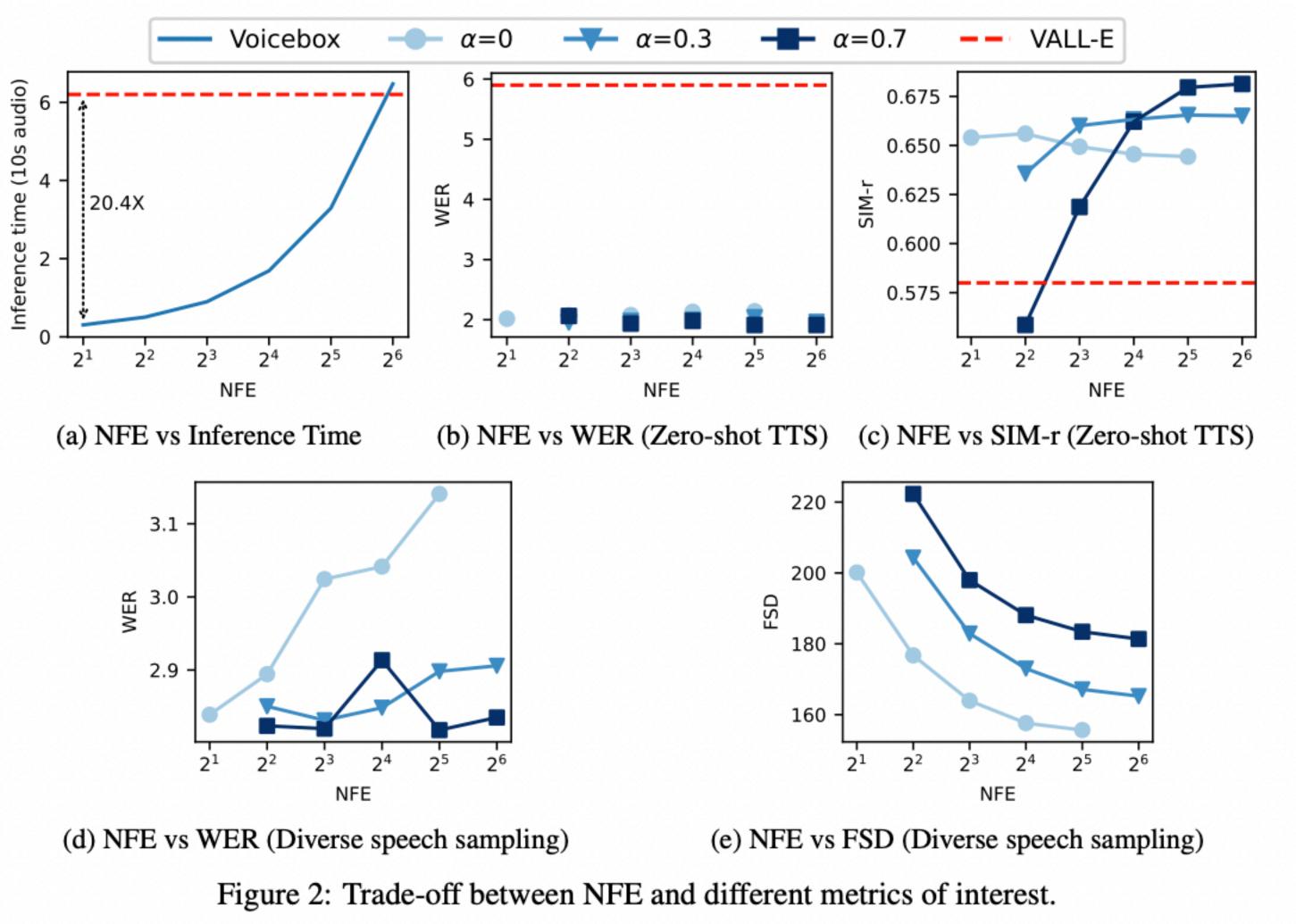
Table 5: Transient noise removal where noise

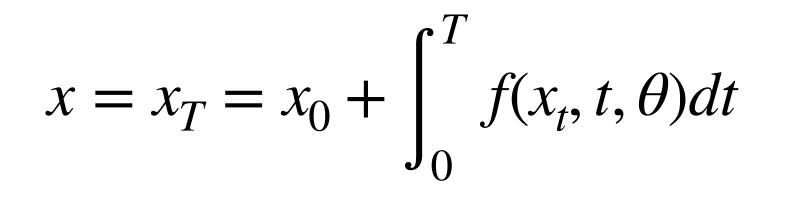
Model	WER	SIM-0	QMOS
Clean speech	2.2	0.687	$4.07{\scriptstyle \pm 0.15}$
Noisy speech	41.2	0.287	2.50 ± 0.15
Demucs	32.5	0.368	2.86 ± 0.17
A3T	11.5	0.148	3.10 ± 0.15
VB-En ($\alpha = 0.7$)	2.0	0.612	3.87 ± 0.17

se o	verlaps	with	50%	of	the	speech	at	a	-10dB	SNR.	
------	---------	------	-----	----	-----	--------	----	---	-------	------	--

Results **Inference time**

 Proportional to number of function evaluations (NFEs)





Results Effect of context duration (on similarity)

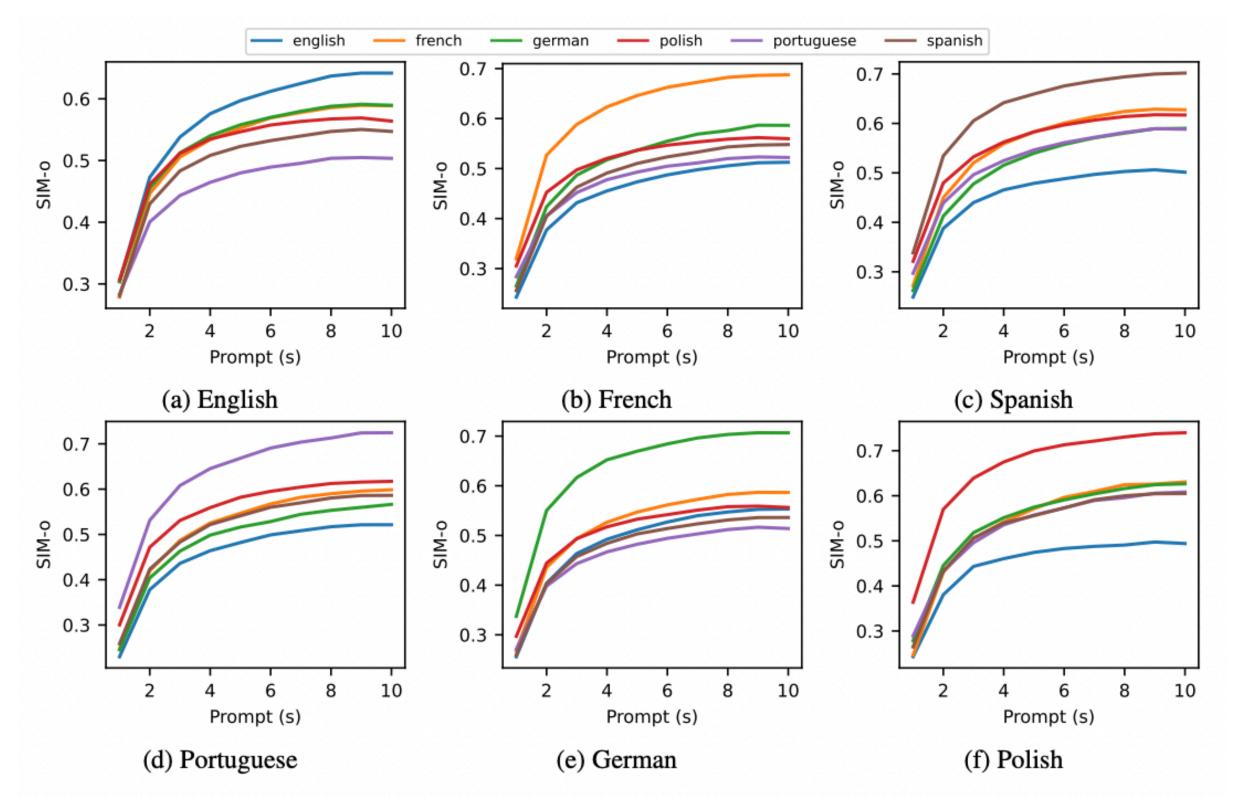


Figure 4: Each subplot considers one of the six target language and shows SIM-o (speaker similarity) as a function of prompt audio duration in seconds for cross-lingual style transfer from different source language. We set the classifier-free guidance strength (α) to 1.0 and use midpoint ODE solver with a NFE of 32.

Results Effect of context duration (on WER)

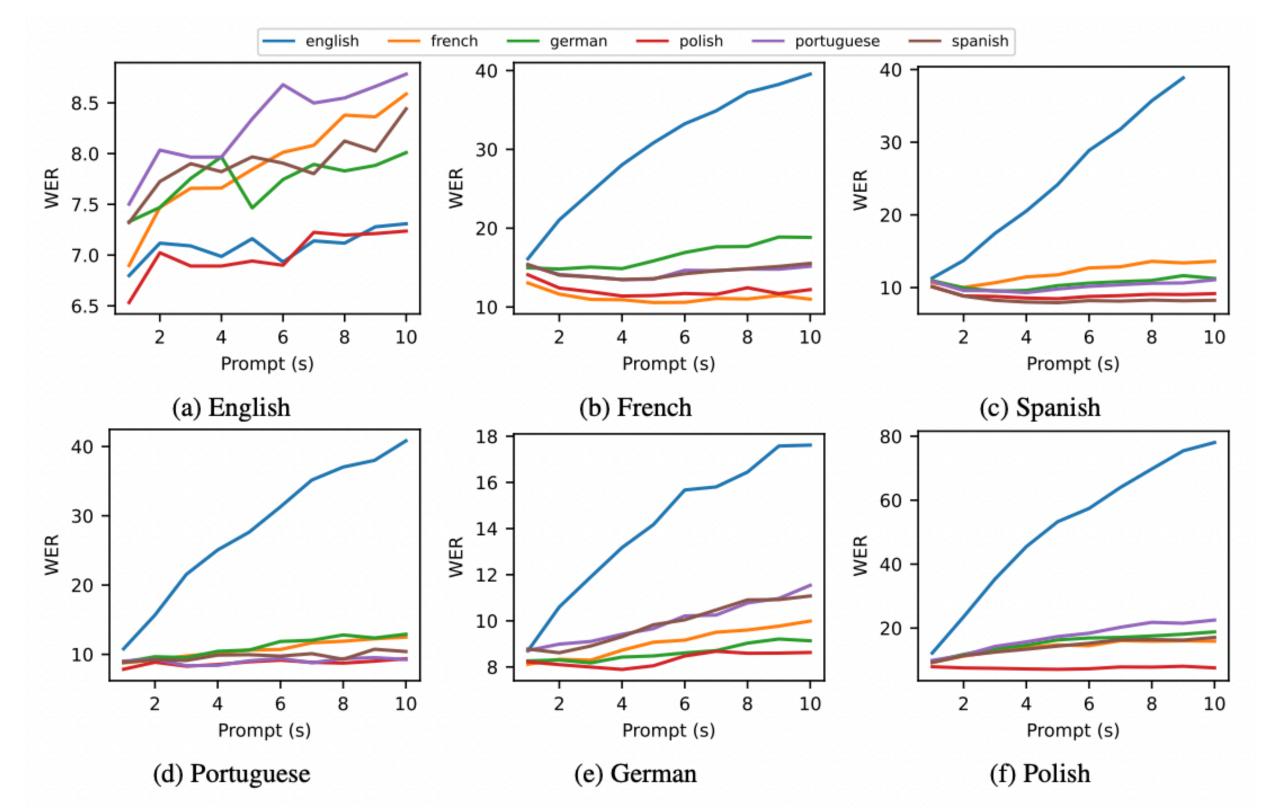


Figure 5: Each subplot considers one of the six target language and shows WER as a function of prompt audio duration in seconds for cross-lingual style transfer from different source language. We find WER remain reasonably low for all cases except for "English" to "X" style transfer. We set the classifier-free guidance strength (α) to 1.0 and use midpoint ODE solver with a NFE of 32.