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Generative Models and
Normalizing Flows

Resources:

1. CVPR 2021 tutorial: https://mbrubake.github.io/cvpr2021-nf_in_cv-tutorial/

2. Lilian Weng. Flow-based deep generative models. https://lilianweng.github.io/posts/2018-10-13-tflow-models



https://mbrubake.github.io/cvpr2021-nf_in_cv-tutorial/
https://lilianweng.github.io/posts/2018-10-13-flow-models

Generative models

Introduction

® A generative model is a probability distribution over random variable X
which we attempt to learn from a set of observed data {Xi}fil with some
probability density px(x) parameterized by 6.

® \What do we want from generative models?
® Fvaluating px(x) for some x
® Sampling from px(x)

® py(x) can be complex data distribution
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Generative models

Gaussian mixture models (GMMs)

® Trained either via maximum likelihood (ML) or a variational bound on

likelihood

® \What do we want from generative models?

® Evaluating px(x) for some x \/

® Sampling from px(x) \/

® py(x) can be complex data distribution x



Generative models

Generative adversarial networks (GANs)

® Trained through an adversarial process (playing a minimax game) —> turns
an unsupervised problem into a supervised one.

® \What do we want from generative models?

® Evaluating px(x) for some x x

® Sampling from px(x) \/

® py(x) can be complex data distribution \/




Generative models _ﬁ\ ™

Q¢(le) po(x|z)

Variational auto-encoders (VAEs)

® Trained with a bound on maximum likelihood (ELBO)

® \What do we want from generative models?

® Fvaluating px(x) for some x

® Sampling from px(x) \/

® py(x) can be complex data distribution




Preliminary

Jacobian matrix
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Preliminary

Change of variables

® | et px(x) and p,(z) be two distributions over random x® |||
variables X and Z.

e 7 = f(X) is an invertible, ditfferentiable function.

|

fx) = x°

px(x) = pz(f(x)) | det Df(x)|

pz(Z) ‘/L

Cool visualization: https://www.youtube.com/watch?v=hhFzJvaY_ U
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https://www.youtube.com/watch?v=hhFzJvaY__U

Preliminary

Change of variables

® | et px(x) and p,(z) be two distributions over random variables X and Z.

e 7 = f(X) is an invertible, differentiable function.

px(x) = pz(f(x)) [ det Df(x) |




Normalizing flows

Flow function

® | ecarn f(X) to transform px(x) into p,(2).

® TWo componentsz "Normalizing” flow
® Base measure: py(z), usually selected asj/(0,I)]

® Flow: f(X), must be invertible and differentiable
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Normalizing flows

Does it satisfy what we want?

® \What do we want from generative models?
® Fvaluating px(x) for some x \/ px(x) = pz(f(x)) | det Df(x) ]|
® Sampling from px(x) \/ Sample z ~ py( - ), then compute x = f~'(z)

® py(x) can be complex data distribution ?
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Normalizing flows

Training

® Maximum likelihood (6 are parameters of the tlow function)

N N
meax Z log px(x) = m@ax Z log p;(f(x;]0)) + log|det Df(x;|60)]
i=1 i=1
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Normalizing flows

What are flows?

e Atlow is a parametric function f(x) which:
® |sinvertible
® |s differentiable

® Has an efficiently computable inverse and Jacobian determinant

| det DA(x) |
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Normalizing flows

Composition of flows

® |nvertible, differentiable functions are closed under composition.

® Build up a complex flow from a composition of simple flows.

f=JkeJk-1°---°h°f

® Determinant computation is simple, because

K K
det Df = det Hka = Hdet Df,
k=1 k=1
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Normalizing flows

Composition of flows

et L D]

S b /3 Ja
Ui e uER i e
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: —f1 fz f3 o fy
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Normalizing flows

Reverse flows

® Can also think about flowing from normal distribution to data distribution.

fl ZO fz zz 1 fz-i-l Zz
0 ®-© @ -

\ | / \ Rl
\ / /
/

- ~ - -~

zo ~ po(zo) Zj ~ Pz( i) ZKg ™~ PK(ZK)

Fig. 2. lllustration of a normalizing flow model, transforming a simple
distribution p_0(2z_0) to a complex one p_K (z_K) step by step.

https://lilianweng.github.io/posts/2018-10-13-flow-models/normalizing-flow.png
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f1(2o) fi(Zi—1) fir1(z)
Normalizing flows @ ® OF (@)=

/, \ 7 N\ 7 N\
/ \ I \ / \
| | | 1 | |
Reverse flows ALY { b PALALY
\ 4 /
N /
zy ~ po(zo) z; ~ pi(z;) zg ~ Pk (2K)

Fig. 2. lllustration of a normalizing flow model, transforming a simple

distribution p_0(z_0) to a complex one p_K(z_K) step by step.

log px(x) = log px(zx) = log px_1(zx_,) — log | det Dfy|
= log px_»(Zx_,) — log|det Dfy_, | —log|det Dfy|

K
= log py(z¢) — Z log | det Dy, |
k=1
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Normalizing flows

Limitations

e Atlow is a parametric function f(x) which:
® |sinvertible
® |s differentiable

® Has an efficiently computable inverse and Jacobian determinant

| det DA(x) |

¢ Itis hard to design flow functions with these constraints!
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Continuous Normalizing Flows

Resources:

1. Chen, T.Q,, Rubanova, Y., Bettencourt, J., & Duvenaud, D.K. (2018). Neural Ordinary Differential
Equations. Neural Information Processing Systems.

2. https://slideslive.com/38917901/neural-ordinary-differential-equations-for-continuous-normalizing-tflows
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Continuous Normalizing flows

From discrete to continuous time steps

Discrete flow

Continuous flow

29 ~ p(2) 20 ~ P(2)
dz
Zt — Ft(Zt—l; 6) Z — f(Zt9 l', 9) Parameterize “instantaneous” change in state
I
X=z7=Fpo...0F(z) x=ZT=zO+[ f(z,1,0)dl
0

Numerical solvers to solve this equation
23



Continuous Normalizing flows

Invertibility
Zo ~ P(2) Zo ~ P(2)
dz
z, = F(z,_1;0) — = f(z,,1,0)
dt
T
0

The functional form of F, needs to be invertible. No constraints on the functional form of f.
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Continuous Normalizing flows

Change of variables

Discrete flow Continuous flow

Zo ~ P(2) 2o ~ P(2)
dz
z, = F(z_1;0) 0 = f(z,, t, 0)
T
X=zp=Fpro...0oF/(2) x=zT=zO+J f(z, t,0)dt
0

OF,

I
log p(x) = log p(z7) = log p(z) — ) log —
[

=1

Jacobian determinant: O(N°) Trace: O(N)
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Continuous Normalizing flows

Training
N

o Irained using maximum likelihood, i.e., maximize Z log p(x, | 0)
i=1

T of
log p(x) = log p(zy) = log p(zy) — [ It [g] dt
0 t
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Continuous Normalizing flows

Limitations

® Training is expensive, since we need to use ODE solvers at every step!
® Computing the trace is linear if Jacobian is known, but quadratic otherwise:

® Usually replaced with a “stochastic estimator” of the trace

T ()f
log p(x) = log p(z7) = Ing(ZO)_J Tr [g] dt
0 5
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Flow Matching for Generative
Modeling

Resources:

1. Lipman,Y., Chen, RT.,, Ben-Hamu, H., Nickel, M., & Le, M. (2022). Flow Matching for Generative
Modeling. ICLR 2023 (spotlight paper).

2. Alex Tong, et al. Improving and Generalizing Flow-Based Generative Models with Minibatch Optimal
Transport. https://www.youtube.com/watch?v=UhDtH/1a9Ag&t=514s
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https://www.youtube.com/watch?v=UhDtH7Ia9Ag&t=514s

What is Flow Matching?

Training objective for continuous normalizing flows

® Suppose p,(x) is the target probability path (indexed by time-step 1) —>
think of the “path” of the probability distribution going from normal to data
distribution

® \\e assume that there is some vector field u,(x) which gives rise to this
probability path.

® Flow matching tries to directly learn this vector tield, i.e.,

Lim(@) = E; ~ vo.nllv(t, x) — u(x)])?
X ~ pt(x)
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What is Flow Matching?

Training objective for continuous normalizing flows

® Flow matching tries to directly learn this vector field, i.e.,

Lm0 = E; ~ vo.nllve(t, x) — u(x)]|*
X ~ pfx)

® Problem: p(x) and u,(x) are unknown!
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Conditional Flow Matching

Solution to the problem

® Replace the "marginal” target probability and vector tield with conditional,
where we condition on the given data:

L eem(@ = E ¢~ vo.) 1ve(t, x)— 1, (x| x))]|7

xp ~ q(xp)

e The gradients of this loss w.r.t. @ are same as the gradient of original loss.

e Now we only need to define g(x;), p,(x|x;), and u (x| x,).
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Conditional Flow Matching

Defining the conditional probabilities

Zerm(©) = E 1~ v.1) [1ve(t, )= u,(x | x))||?

xp ~ q(xy)

® ¢(x,)is set as the uniform distribution over the training data.

® \\Ve want a conditional vector field that flows from standard Normal
distribution to a Gaussian distribution centered at x; with std o

32



Conditional Flow Matching

Defining the conditional probabilities

® \\Ve want a conditional vector field that flows from standard Normal
distribution to a Gaussian distribution centered at x; with std o

p(x|x;) = N(x|txy,(toc —t + 1)%)

x;— (1 —o)x

u(x|x)) = m
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Conditional Flow Matching

Training loop

Algorithm 1 Conditional Flow Matching

Input: Efficiently samplable q(z), p:(z|z), and com-
putable u;(x|z) and initial network vy.
while Training do
z~q(z); t~U(0,1); z~ pi(z|z)
Lorm(0)  |lvg(t, ) — ui(z|2)]|?
0+ Update(e, VoLcrMm (9))
return vy
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What do we want from generative models?
® Evaluating px(x) for some x
e Sampling from px(x)

® px(x) can be complex data distribution

Use change of variables!

px(x) = pz(f(x)) | det Df(x) |

Normalizing Flows

Conditional Flow Matching

* Train by directly regressing on the vector field
instead of solving ODEs.

® Can use any functional form!

® But training is still slow since it needs to solve
ODEs at each time step.

Problems:

® |imited set of flow functions since
® Requires invertibility

® [Efficient computation of Jacobian

l

time-steps!
e Model as ODEs.

e Use instantaneous change instead of discrete

Continuous Normalizing

35
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VoiceBox

Resources:

1. Le, M., Vyas, A., Shi, B., Karrer, B., Sari, L., Moritz, R., Williamson, M., Manohar, V., Adi, Y., Mahadeokar, J., & Hsu,
W. (2023). Voicebox: Text-Guided Multilingual Universal Speech Generation at Scale. ArXiv, abs/
2306.15687.
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Methodology

Task

® Task: text-guided speech infilling

® Predict masked segment of speech based on surrounding audio context ana
complete text transcript

® Text transcript is provided as frame-level phone alignments
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Methodology

Model

® Modelis divided into 2 components:
® Audio model
® Duration model

® Audio model is a CNF trained on 80-dim log Mel spectrogram extracted at
100Hz frame rate.

® Duration model is a simple regression trained with L1 loss.
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Methodology

Audio Model

Sinusoidal encoding

Original sample

NXF

thx E |' Xc c RNXD

Sample at
flow step t

4 Transformer (330M)
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Embeddings for v
phone alignments
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Methodology

Duration Model (same as FastSpeech)

Masked lengths

[, €RY

1« Transformer (34M)

1alouy

O
O
=)
0
O
~t
Qo

Embeddings for
phones

Yemb SH

MXxXH
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Methodology

Inference
T

X =Xp =X+ J flx,, t,0)dt
0

1. Sample x,.

2. Use numerical ODE solver to solve the above equation for x.

41



Experiments
Setup

® 330M parameter transtormer is used for audio model.
® \VB-En model trained on 60k hours of audiobooks in English

® \/B-Multi trained on 50k hours of audiobooks in 6 languages
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Results

Monolingual zero-shot TTS

Table 2: English zero-shot TTS results on filtered LS test-clean. "-" results are not available. We

obtain VALL-E continuation SIM result through communication with the authors.
Model WER SIM-o SIM-r QMOS SMOS
Ground truth 2.2 0.754 n/a 3.98+014 4.01+0.09
cross-sentence
A3T 63.3 0.046 0.146 - -
YourTTS 7.7 0.337 n/a 3.27+013  3.19+0.14
VALL-E 5.9 - 0.580 - -
VB-En 1.9 0.662 0.681 3.78+010 3.71+o0.1
continuation
A3T 18.7 0.058 0.144 . .
VALL-E 3.8 0452 0.508 - -
VB-En (a = 0.7) 2.0 0.593 0.616 - -
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Results

Cross-lingual zero-shot TTS

Table 4: Multilingual zero-shot TTS SMOS/QMOS results on filtered MLS English test set with
prompts in different languages. YT/VB-Multi refers to YourTTS/multilingual Voicebox. “Ref” shows
the audio context language.

Ref=De Ref=En Ref=Es Ref=Fr Ref=PI Ref=Pt

SMOS (target text = En)
b b 3.26+011 3241011 3.22+012 3.48+010 3.26+009 3.38+o.11
VB-Multi (¢ = 1.0) | 3.894+010 3.931008 3.84+010 3.92+000 3.81+008 3.96+0.09

QMOS (target text = En)
YT 3.29+012 3.174+013 3.29+012 3.08+012 3.35+012 3.21+012
VB-Multi (a« = 1.0) | 3.67+009 3.48+009 3.45+011 3.31+012 3.75+011 3.35+013
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Results

Transient noise removal

® A3T and VB-En use transcript and location of noisy segments.

® \/B-En is basically doing infilling rather than denoising.

Table 5: Transient noise removal where noise overlaps with 50% of the speech at a -10dB SNR.

Model WER SIM-0o QMOS
Clean speech 2.2 0.687 4.07+o0.15
Noisy speech 41.2  0.287  2.50+o0.15
Demucs 32.5 0.368 2.86+0.17
A3T 11.5 0.148  3.10+0.15
VB-En (o = 0.7) 2.0 0.612 3.87+017
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Results

Inference time

® Proportional to number

of function evaluations
(NFEs)

T
x=xp=xo+ | [flx,t,0)dt
0

Inference time (10s audio)

= \/OiCcebox a=0 - a=0.3 - a=0.7
T e ———
0.675 -
S 0.650 -
o -
. < 0.625 -
= 0
0.600 -
3 -
0.575 -
2 ® a5 B § B
21 22 23 4 5 o6
NFE

(a) NFE vs Inference Time (b) NFE vs WER (Zero-shot TTS) (c) NFE vs SIM-r (Zero-shot TTS)
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(d) NFE vs WER (Diverse speech sampling) (e) NFE vs FSD (Diverse speech sampling)

Figure 2: Trade-off between NFE and different metrics of interest.
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Results

Effect of context duration (on similarity)

= english ~ french —german = polish - portuguese = spanish
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Figure 4: Each subplot considers one of the six target language and shows SIM-o (speaker similarity)
as a function of prompt audio duration in seconds for cross-lingual style transfer from different source
language. We set the classifier-free guidance strength () to 1.0 and use midpoint ODE solver with a
NFE of 32.
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Results

Effect of context duration (on WER)
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Figure 5: Each subplot considers one of the six target language and shows WER as a function of
prompt audio duration in seconds for cross-lingual style transfer from different source language. We
find WER remain reasonably low for all cases except for “English” to “X” style transfer.We set the
classifier-free guidance strength () to 1.0 and use midpoint ODE solver with a NFE of 32.
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