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Motivation

• Local and global characteristics in speech

Phonetic events occur at temporally local level

Speaker, channel, and linguistic context exist globally.



Motivation

• RNNs can exploit both local and global information.



Motivation

• RNNs can exploit both local and global information.

But this computation is sequential!



Motivation

• Is there a way to exploit both global and local features but 
using batch computation?


• YES! Use Transformers :)



Transformer

Source: http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/


Transformer



Transformer
Computed for all pairs of input 

frames -> global and local features



Transformer
Computed for all pairs of input 

frames -> global and local features

No sequential dependence



Transformer



Transformer

• So everything is perfect, we can all go home now :)


• …but not quite! 



Transformer

• So everything is perfect, we can all go home now :)


• …but not quite! 

DQ: Can you spot the problems in using Transformers directly for ASR?



Transformer: Limitations

1. For ASR, input sequence can contain thousands of 
frames! Model has O(n2) complexity.


2. Encoder needs to process the whole utterance before 
decoding can start -> online ASR cannot work!



Early efforts

Sperber et al. Self-attentional acoustic models. Interspeech 2018.

• Downsampling before self-attention layer -> reduces 
sequence size


• Local masking -> can compute self-attention for a chunk 
of frames



Early efforts



• We don’t have global features anymore. This degrades 
performance!

Early efforts

DQ: Can you spot a problem with using such naive block processing?



Contextual Block Processing



Contextual Block Processing

2 convolutional layers with stride 2 -> downsampled 
to T/4 frames



Contextual Block Processing

• In experiments, Lblock = 2 Lhop 

• Higher Lblock means more context but lower parallelization



Contextual Block Processing

Additional vector inputs to the encoder



Contextual Block Processing

• How to initialize? 

1. Positional encoding


2. Average input


3. Maximum input



Contextual Block Processing



Contextual Block Processing

In each layer, previous block passes a context 
vector to the next block -> Context Inheritance



Contextual Block Processing

This framework enables a deeper layer to hold longer context information.



Contextual Block Processing



Contextual Block Processing

Only central frames are taken in the 
output for the encoder.



Contextual Block Processing

• Only encoder processes in blocks. Decoder is still 
sequential, because it is difficult for the decoder to do 
such block processing.

DQ: Why do you think it is difficult for decoder to process in blocks?



Contextual Block Processing

DQ: Why do you think it is difficult for decoder to process in blocks?

• Estimating the optimal alignment between encoder output 
and decoder is difficult!

• Only encoder processes in blocks. Decoder is still 
sequential, because it is difficult for the decoder to do 
such block processing.



Implementation

• Similar to implementation in earlier work on block 
processing.


• Whole utterance is given to each encoder.


• Encoder has mask which is applied on utterance to select 
frames which it has to process.



Implementation

• Naive block processing.


• Lblock =  Lhop = 4


• Dark regions pass values



Implementation

• Contextual block processing


• Lblock =  Lhop = 4


• Inserting vector after each block is 
hard

Context vector



Implementation

• Contextual block processing


• Lblock =  Lhop = 4


• Modified mask with same 
functionality

Context vectors



Experiments

• Datasets: WSJ (English), Librispeech (English), VoxForge 
(Italian), AISHELL (Mandarin)


• 80-dim Fbank features extracted using 25 ms windows 
with a hop size of 10 ms


• Trained using multitask learning (attention + CTC) using 
Espnet



WER Results

Hybrid HMM-DNN (Kaldi) gets 4.36% WER with a trigram LM 
and 2.36% with a big dictionary and 4-gram LM rescoring.

We expect online encoders to do worse than batch encoders.



WER Results

Unidirectional LSTM -> naturally online model



WER Results

C

Naive block processing, without context vectors



WER Results



WER Results

Only this initialization used for further experiments



WER Results



WER Results

Contextual inheritance does not seem to help a lot.



Effect of block size
We saw earlier!



Effect of block size



Effect of block size

For smaller block sizes, context 
vectors are VERY useful



Effect of block size

Block size 16 is sufficient for 
contextual block processing



Effect of block size

Block size of 32 is sufficient to acquire certain 
context information for naive block processing



Analysis of attention weights

Analysis performed on a randomly sampled evaluation utterance

Each color corresponds to an attention head



At the bottom, attention tends to the input sequence evenly



In deeper layers, attention weights start to develop peaks



Different heads attend to different parts of the input



Context vector is not very useful in lower layers



Deeper layers seem to rely on context information more



But not all attention heads use the context information



Key takeaways

• Transformers are good, but not for long input sequences.


• Process in blocks, but pass context with a vector.


• Faster + online 



–Optimus Prime (Transformers)

“We can’t transform, but we’re not helpless.” 


