
Transformer ASR with
Contextual Block Processing
Emiru Tsunoo, Yosuke Kashiwagi, Toshiyuki Kamakura, Shinji Watanabe

Presented by: Desh Raj

Motivation

• Local and global characteristics in speech

Motivation

Phonetic events occur at temporally local level

• Local and global characteristics in speech

Motivation

• Local and global characteristics in speech

Phonetic events occur at temporally local level

Speaker, channel, and linguistic context exist globally.

Motivation

• RNNs can exploit both local and global information.

Motivation

• RNNs can exploit both local and global information.

But this computation is sequential!

Motivation

• Is there a way to exploit both global and local features but
using batch computation?

• YES! Use Transformers :)

Transformer

Source: http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

Transformer

Transformer
Computed for all pairs of input

frames -> global and local features

Transformer
Computed for all pairs of input

frames -> global and local features

No sequential dependence

Transformer

Transformer

• So everything is perfect, we can all go home now :)

• …but not quite!

Transformer

• So everything is perfect, we can all go home now :)

• …but not quite!

DQ: Can you spot the problems in using Transformers directly for ASR?

Transformer: Limitations

1. For ASR, input sequence can contain thousands of
frames! Model has O(n2) complexity.

2. Encoder needs to process the whole utterance before
decoding can start -> online ASR cannot work!

Early efforts

Sperber et al. Self-attentional acoustic models. Interspeech 2018.

• Downsampling before self-attention layer -> reduces
sequence size

• Local masking -> can compute self-attention for a chunk
of frames

Early efforts

• We don’t have global features anymore. This degrades
performance!

Early efforts

DQ: Can you spot a problem with using such naive block processing?

Contextual Block Processing

Contextual Block Processing

2 convolutional layers with stride 2 -> downsampled
to T/4 frames

Contextual Block Processing

• In experiments, Lblock = 2 Lhop

• Higher Lblock means more context but lower parallelization

Contextual Block Processing

Additional vector inputs to the encoder

Contextual Block Processing

• How to initialize?

1. Positional encoding

2. Average input

3. Maximum input

Contextual Block Processing

Contextual Block Processing

In each layer, previous block passes a context
vector to the next block -> Context Inheritance

Contextual Block Processing

This framework enables a deeper layer to hold longer context information.

Contextual Block Processing

Contextual Block Processing

Only central frames are taken in the
output for the encoder.

Contextual Block Processing

• Only encoder processes in blocks. Decoder is still
sequential, because it is difficult for the decoder to do
such block processing.

DQ: Why do you think it is difficult for decoder to process in blocks?

Contextual Block Processing

DQ: Why do you think it is difficult for decoder to process in blocks?

• Estimating the optimal alignment between encoder output
and decoder is difficult!

• Only encoder processes in blocks. Decoder is still
sequential, because it is difficult for the decoder to do
such block processing.

Implementation

• Similar to implementation in earlier work on block
processing.

• Whole utterance is given to each encoder.

• Encoder has mask which is applied on utterance to select
frames which it has to process.

Implementation

• Naive block processing.

• Lblock = Lhop = 4

• Dark regions pass values

Implementation

• Contextual block processing

• Lblock = Lhop = 4

• Inserting vector after each block is
hard

Context vector

Implementation

• Contextual block processing

• Lblock = Lhop = 4

• Modified mask with same
functionality

Context vectors

Experiments

• Datasets: WSJ (English), Librispeech (English), VoxForge
(Italian), AISHELL (Mandarin)

• 80-dim Fbank features extracted using 25 ms windows
with a hop size of 10 ms

• Trained using multitask learning (attention + CTC) using
Espnet

WER Results

Hybrid HMM-DNN (Kaldi) gets 4.36% WER with a trigram LM
and 2.36% with a big dictionary and 4-gram LM rescoring.

We expect online encoders to do worse than batch encoders.

WER Results

Unidirectional LSTM -> naturally online model

WER Results

C

Naive block processing, without context vectors

WER Results

WER Results

Only this initialization used for further experiments

WER Results

WER Results

Contextual inheritance does not seem to help a lot.

Effect of block size
We saw earlier!

Effect of block size

Effect of block size

For smaller block sizes, context
vectors are VERY useful

Effect of block size

Block size 16 is sufficient for
contextual block processing

Effect of block size

Block size of 32 is sufficient to acquire certain
context information for naive block processing

Analysis of attention weights

Analysis performed on a randomly sampled evaluation utterance

Each color corresponds to an attention head

At the bottom, attention tends to the input sequence evenly

In deeper layers, attention weights start to develop peaks

Different heads attend to different parts of the input

Context vector is not very useful in lower layers

Deeper layers seem to rely on context information more

But not all attention heads use the context information

Key takeaways

• Transformers are good, but not for long input sequences.

• Process in blocks, but pass context with a vector.

• Faster + online

–Optimus Prime (Transformers)

“We can’t transform, but we’re not helpless.”

