
Desh Raj
Speech Technologies Reading Group
October 14, 2022

How to train transducer-based ASR systems
(Without memory bottlenecks)

Overview

• Preliminary: Transducer-based ASR

• The problem of memory

• Method 1: Efficient implementation (Microsoft)

• Method 2: Alignment-restricted training (Meta)

• Method 3: Pruned transducer (k2)

2

Preliminary
All the major ASR approaches

3

Automatic Speech
Recognition

Hybrid HMM-DNN

End-to-end

Connectionist Temporal
Classification (CTC)

Neural transducer (or RNN-T)

Attention-based encoder-
decoder

Acoustic model (AM), language model (LM),
lexicon, decision tree

Frame-synchronous

Label-synchronous

Before 2016

Since 2016

Preliminary
Connectionist Temporal Classification (CTC)

• Given input speech , find best word sequence

• Need to compute

• For training, loss is

• For inference,

• Problem: Do not know alignment between and

X Y

P(Y ∣ X)

−log P(Y ∣ X)

Ŷ = argmaxY P(Y ∣ X)

X Y

4

Preliminary
Connectionist Temporal Classification (CTC)

• Problem: Do not know alignment between and

• Solution: sum over all possible alignments

X Y

5

Encoder

xt

he
t

Softmax

p(at ∣ x1:t)

P(Y ∣ X) = ∑
A∈𝒜T

Y

P(A, Y ∣ X) = ∑
A∈𝒜T

Y

P(Y ∣ A, X)P(A ∣ X)

= ∑
A∈𝒜T

Y

P(Y ∣ A)P(A ∣ X) = ∑
A∈𝒜T

Y

P(A ∣ X)

= ∑
A∈𝒜T

Y

T

∏
t=1

P(at ∣ X)

Conditional independence of outputs

Preliminary
Connectionist Temporal Classification (CTC)

• What is an alignment?

• Example: is of length 5, is CAT

• Alignments: CCAAT, CATT, CAA T, etc.

• To get word from alignment, first collapse repetitions, then remove

• Now we only need a way to sum over all such alignments

• Problem: Exponentially many alignments

X Y

ϵ ϵ

ϵ

6

Preliminary
Connectionist Temporal Classification (CTC)

• Problem: Exponentially many alignments

• Solution: dynamic programming

• Similar to HMM forward algorithm

7
https://distill.pub/2017/ctc/

—

Preliminary
Problems with CTC

1. Conditional independence of outputs

2. Output sequence must be shorter than input sequence

8

RNN-Transducer
Solves both of the problems with CTC

9

Encoder Predictor

Joiner

xtyu−1

hp
u he

t

Softmax

zt,u

p(yu ∣ x1:t, y1:u−1)1. Conditional independence of outputs

• Use a predictor network (autoregressive
model on previous outputs)

2. Output sequence must be shorter than
input sequence

• Allow multiple outputs at each time step

RNN-Transducer
Alignments

10

C

A

T

ϕ ϕ ϕ

tu

αt,u

αt,u−1

αt−1,u

ht−1,u[ϕ]

ht,u−1[yu]

Forward algorithm

α(t, u) = α(t − 1,u)ht−1,u[ϕ] + α(t, u − 1)ht,u−1[yu]

RNN-Transducer
The memory problem

11

Encoder Predictor

Joiner

xtyu−1

hp
u he

t

Softmax

zt,u

p(yu ∣ x1:t, y1:u−1)• Suppose B is batch size, T is number of
frames in input (padded), U is output
sequence length (padded), D is output
dimension (equal to vocabulary size + 1), F is
hidden layer dimension.

• has shape (B, T, F); has shape (B, U, F)

• To combine and , we will use
broadcasting, resulting in 4-D tensor of size
(B, T, U, D).

he hp

he hp

ht,u = ψ(WEhe
t + WPhp

u + bz)

zt,u = Wzht,u + bz

RNN-Transducer
The memory problem

12

Encoder Predictor

Joiner

xtyu−1

hp
u he

t

Softmax

zt,u

p(yu ∣ x1:t, y1:u−1)• To combine and , we will use
broadcasting, resulting in 4-D tensor of
size (B, T, U, D).

• For a simple case, B=32, T=1000 (10
seconds), U=100 (~5 words/sec), D=1000,
this equal 3.2 x 10^9, or 12.8 GB with
single-precision floats.

• And this is just for storing the logits.

he hp

ht,u = ψ(WEhe
t + WPhp

u + bz)

zt,u = Wzht,u + bz

https://lorenlugosch.github.io/posts/2020/11/transducer/

Method 1: Efficient Implementation
Problem (a): Logit tensor contains lot of padding tokens

13

• has shape (B, T, U, D), but a lot of these elements are just padding.

• Can we efficiently create this tensor?

• Naive method: sort sequences by length in training to reduce padding?

• Results in worse accuracy compared to randomized mini-batches

z

Method 1: Efficient Implementation
Idea (a): concatenate instead of broadcast

14

• For each batch element of shape — convert into 2-D tensor of
shape .

• Concatenate all such elements along the axis 0

• Results in 2D tensor of shape

• This tensor has NO padding tokens!

zb (Tb, Ub, D)
(Tb × Ub, D)

(∑
b∈B

Tb × Ub, D)

Method 1: Efficient Implementation
Problem (b): Need to store 3 large tensors

15

• Standard modular implementation: logits -> softmax -> RNN-T loss.

• For getting the derivative, we need to store 3 large tensors (chain rule):

• Derivative of loss w.r.t softmax output

• Softmax output tensor

• Derivative of softmax output w.r.t logits

Method 1: Efficient Implementation
Idea (b): function merging

16

• Directly pass logits to RNN-T loss and compute derivatives without going
through softmax.

• Only need to store 1 large tensor instead of 3!

∂L
∂zk

t,u
=

P(k ∣ t, u)α(t, u)
P(y ∣ x)

β(t, u) −
β(t, u + 1) if k = yu+1

β(t + 1,u) if k = ∅
0 otherwise

Method 1: Efficient Implementation
Benchmarking

17

• Originally proposed by Microsoft [1]

• Open source re-implementation available here: https://github.com/
csukuangfj/optimized_transducer

• Benchmark (from https://github.com/csukuangfj/transducer-loss-
benchmarking):

Method Avg. step time (us) Peak memory (MB)

warp_transducer (ESPNet) 275852 19072.6

optimized_transducer 376954 7495.9

[1] J. Li, R. Zhao, H. Hu, and Y. Gong, “Improving RNN Transducer Modeling for End-to-End Speech Recognition.” IEEE ASRU 2019.

https://github.com/csukuangfj/optimized_transducer
https://github.com/csukuangfj/optimized_transducer
https://github.com/csukuangfj/optimized_transducer
https://github.com/csukuangfj/optimized_transducer
https://github.com/csukuangfj/optimized_transducer
https://github.com/csukuangfj/optimized_transducer
https://github.com/csukuangfj/transducer-loss-benchmarking
https://github.com/csukuangfj/transducer-loss-benchmarking
https://github.com/csukuangfj/transducer-loss-benchmarking
https://github.com/csukuangfj/transducer-loss-benchmarking
https://github.com/csukuangfj/transducer-loss-benchmarking
https://github.com/csukuangfj/transducer-loss-benchmarking

Method 2: Alignment-restricted training
Alignment-free training can cause token emission delays

18

• Remember RNN-T lattice?

• Since RNN-T performs alignment-free
training (sum over all alignments), it
could very well learn to wait until the
last time-step to output all tokens.

• This can cause token emission delay,
which is bad for streaming ASR.

C

A

T

ϕ ϕ ϕ

tu

Method 2: Alignment-restricted training
Key idea: enforce alignment between input and output

19

• If we roughly know that a token
should be emitted at a particular
time-step (+- some buffer), we can
enforce this in training.

• This means that instead of summing
over “all possible alignments”, we are
summing over a restricted set of
alignments.

C

A

T

ϕ ϕ ϕ

tu
[2] J. Mahadeokar et al., “Alignment Restricted Streaming Recurrent Neural Network Transducer.” IEEE SLT 2020.

Method 2: Alignment-restricted training
Key idea: enforce alignment between input and output

20

We can get the external
alignment from an HMM-
based aligner.

Method 2: Alignment-restricted training
Simple example

21

C

A

T

ϕ ϕ ϕ

tu

Ground truth

Allowed +- 1 time-step

Method 2: Alignment-restricted training
How is it implemented in loss computation?

22

α(t, u) = α(t − 1,u)ht−1,u[ϕ] + α(t, u − 1)ht,u−1[yu]Standard RNN-T

AR-RNNT h̄t,u−1[yu] = {ht,u−1[yu], if vlu ≤ t ≤ vru

0, otherwise

vlu = au − bl

vru = au + br
And likewise for backward computation (to get gradients)

Method 2: Alignment-restricted training
Some details

23

• External alignments are obtained using a hybrid model trained with cross-
entropy loss.

• These alignments are at word-level, but RNN-T output is at subword-level.
How to reconcile?

• Evenly split the time between the word-pieces.

Method 2: Alignment-restricted training
But how does it help in saving memory?

24

• Pre-compute the valid time ranges for every

• Similar to Method 1, concatenate sequences into a 2D tensor, only keeping
the time-steps that fall in the valid ranges.

• Results in 2D tensor of shape

• Allows training with 4x the batch size!

(vlu, vru) yu

(∑
b∈B

(bl + br) × Ub, D)

Method 2: Alignment-restricted training
Limitation

25

• The major limitation here is that we need to train a hybrid ASR system to
obtain the external alignments.

Method 3: Pruned RNN-T
Very similar to AR-RNNT, but no need for alignments

26

• Consider the following figure showing node gradients during RNN-T training
at the beginning and after model has been trained for a while:

[3] F. Kuang et al., “Pruned RNN-T for fast, memory-efficient ASR training.” InterSpeech 2022.

1. At each time-step, only small range of nodes
have non-zero gradient.

2. Position of nodes with non-zero gradient
changes monotonically.

Method 3: Pruned RNN-T
Key idea: Restrict U for each time step

27

• At each time step, we can restrict U to a small set S.

• Logit tensor becomes (B, T, S, D), where S is a small number like 5.

• If U = 100, this means a 20x memory saving.

• Question: How do we generate the set S for each time-step?

Method 3: Pruned RNN-T
Solution: Use a “simple” joiner to approximate S

28

• A 2-step process is used to compute the final loss.

• Recall original joiner:

ht,u = ψ(WEhe
t + WPhp

u + bz)

zt,u = Wzht,u + bz

• We don’t want to compute this “full” joiner for all U tokens.

Method 3: Pruned RNN-T
Solution: Use a “simple” joiner to approximate S

29

• “Simple” joiner: project and to dimension D, add them (treating as log-
probabilities, and then normalize.

•

• can be computed using LogSumExp trick

• In this way, we avoid computing the large tensor (B, T, U, D)

he hp

α(t, u)[v] = he
t [v] + hp

u[v] − hnorm(t, u)

hnorm(t, u)

Method 3: Pruned RNN-T
Obtaining pruning bounds using the simple joiner

30

• We want to use the computed using the “simple” joiner to prune the
RNN-T lattice.

α(t, u)

Method 3: Pruned RNN-T
Obtaining pruning bounds using the simple joiner

31

• Compute the derivatives and w.r.t the simple joiner loss.

• These can be interpreted as the “occupation counts” for taking the upward
and rightward transitions.

y′ (t, u) ϕ′ (t, u)

Method 3: Pruned RNN-T
Obtaining pruning bounds using the simple joiner

32

• Suppose and , for .

• This means that we will retain u = {2,3,4,5}

S = 4 pt = 2 t = 3

Method 3: Pruned RNN-T
Obtaining pruning bounds using the simple joiner

33

• Minimum retained log-prob for this
choice of

• Compute argmax for all values of

• Adjust the bounds to ensure
continuity. For example, consecutive
time-steps should be monotonically
increasing.

pt

pt

ϕ′ (t,2) + ϕ′ (t,3) + ϕ′ (t,4) + ϕ′ (t,5) − y′ (t,1)

Method 3: Pruned RNN-T
Benchmarking

34

• Implemented in k2: https://github.com/k2-fsa/k2

• Benchmark (from https://github.com/csukuangfj/transducer-loss-
benchmarking):

Standard RNN-T using modular PyTorch

Efficient 2-D tensor using CUDA

Standard RNN-T using CUDA

Standard RNN-T using Numba

Pruned RNN-T using CUDA

https://github.com/k2-fsa/k2
https://github.com/csukuangfj/transducer-loss-benchmarking
https://github.com/csukuangfj/transducer-loss-benchmarking
https://github.com/csukuangfj/transducer-loss-benchmarking
https://github.com/csukuangfj/transducer-loss-benchmarking
https://github.com/csukuangfj/transducer-loss-benchmarking
https://github.com/csukuangfj/transducer-loss-benchmarking

AR-RNNT vs. Pruned RNN-T

35

• Basically, we are using the “simple” joiner output to get an approximate
alignment between the encoder output and the prediction network output
(instead of an externally provided alignment as in AR-RNNT).

• We then use this approximate alignment to prune the lattice.

• Overall, AR-RNNT and pruned RNNT are the same idea but implemented
differently.

Key take-aways

• Transducers are most popular for ASR in industry

• But they require large memory (due to BxTxUxD tensor)

• Efficiently storing the logits by removing padding saves cost

• We can also leverage the fact that there is an obvious alignment between
encoder and decoder to prune the lattice

• This alignment can either be obtained from a hybrid system (AR-RNNT)

• Or computed using a simple joiner in first pass (pruned RNNT)

36

