How to train transducer-based ASR systems
(Without memory bottlenecks)

Desh Raj
Speech Technologies Reading Group
October 14, 2022

Overview

® Preliminary: Transducer-based ASR

® The problem of memory

® Method 1: Efficient implementation (Microsoft)
® Method 2: Alignment-restricted training (Meta)

® Method 3: Pruned transducer (k2)

Preliminary
All the major ASR

Automatic Speech
Recognition

approaches

Hybrid HMM-DNN

Before 2016

Connectionist Temporal
Classification (CTC)

End-to-end »

Neural transducer (or RNN-T)

Since 2016 K‘
3

Acoustic model (AM), language model (LM),
lexicon, decision tree

Frame-synchronous

Label-synchronous

Preliminary

Connectionist Temporal Classification (CTC)

® Given input speech X, find best word sequence Y

® Need to compute P(Y | X)

® Fortraining, loss is —log P(Y | X)

A\

® Forinference, Y = argmaxy P(Y | X)

® Problem: Do not know alignment between X and Y

Preliminary

Connectionist Temporal Classification (CTC)

® Problem: Do not know alignment between X and Y

® Solution: sum over all possible alignments pla; | xi.)

PY | X) = Z PA,Y | X) = Z P(Y | A, X)P(A | X)
Aed?, Aeds,

= Y P(Y|APA|X)= Y PA|X)

AcsT Acs? Encoder
4L 5 At
= Y J]P@1%)
Aedi =1

Conditional independence of outputs

Preliminary

Connectionist Temporal Classification (CTC)

® \What is an alignment?

® Example: X is of length 5, Y is CAT

o Alignments: CCAAT, eCATT, CAAE€T, etc.

® To get word from alignment, first collapse repetitions, then remove €

® Now we only need a way to sum over all such alignments

® Problem: Exponentially many alignments

Preliminary

Connectionist Temporal Classification (CTC)

® Problem: Exponentially many alignments
® Solution: dynamic programming ¥

® Similar to HMM forward algorithm ‘@

€

Node (s, t) in the diagram represents a, ; - the CTC

score of the subsequence Z,.; after t input steps.

https://distill.pub/2017/ctc/

Preliminary
Problems with CTC

1. Conditional independence of outputs

2. Output sequence must be shorter than input sequence

RNN-Transducer

Solves both of the problems with CTC

1. Conditional independence of outputs

® (Jse a predictor network (autoregressive
model on previous outputs)

2. Output sequence must be shorter than
INput sequence

e Allow multiple outputs at each time step

p(yu | Al yl:u—l)

T <t

Joiner

Wy h¢

Predictor Encoder

RNN-Transducer

Alignments a(t,u) = a(t — Luh,_ [¢]+ a(t,u — Dh,,_[y,]

000 o8
00
o0 &=

WQ_’O Forward algorithm

10

= yw(Wgh/ + Wph + b))

RNN-Transducer

The memory problem e = Wl + 0

® Suppose B is batch size, T is number of PO | X Y1)

frames in input (padded), U is output @
sequence length (padded), D is output

dimension (equal to vocabulary size + 1), F is Ztu
hidden layer dimension. p Jomner
® /1° has shape (B, T, F); h” has shape (B, U, F) h? T hf
® To combine h¢ and h?, we will use Predictor Encoder

broadcasting, resulting in 4-D tensor of size 1

i f
(B, T, U, D). 1111
s

11

RNN-Transducer

The memory problem

® To combine h® and h”, we will use

broadcasting, resulting in 4-D tensor of
size (B, T, U, D).

® For asimple case, B=32, T=1000 (10
seconds), U=100 (~5 words/sec), D=1000,
this equal 3.2 x 1079, or 12.8 GB with

single-precision floats.

® And this is just for storing the logits.

https://lorenlugosch.github.io/posts/2020/11/transducer/

12

= yw(Wgh/ + Wph + b))

Zpu = tht,u + bZ

PO X1 Y1us1)

Ztu

Joiner

T

Wy h¢

Predictor Encoder

[
J11]

Method 1: Efficient Implementation

Problem (a): Logit tensor contains lot of padding tokens

® 7 has shape (B, T, U, D), but a lot of these elements are just padding.
® Can we efficiently create this tensor?
® Naive method: sort sequences by length in training to reduce padding?

® Results in worse accuracy compared to randomized mini-batches

13

Method 1: Efficient Implementation

Idea (a): concatenate instead of broadcast

® For each batch element z, of shape (7}, U,, D) — convert into 2-D tensor of
shape (T, X U, D).

® Concatenate all such elements along the axis O

o Resultsin 2D tensor of shape (Z I, X Uy, D)
beEB

® This tensor has NO padding tokens!

14

Method 1: Efficient Implementation

Problem (b): Need to store 3 large tensors

® Standard modular implementation: logits -> softmax -> RNN-T loss.

® For getting the derivative, we need to store 3 large tensors (chain rule):
® Derivative of loss w.r.t softmax output
® Softmax output tensor

® Derivative of softmax output w.r.t logits

15

Method 1: Efficient Implementation

Idea (b): function merging

® Directly pass logits to RNN-T loss and compute derivatives without going
through softmax.

® Only need to store 1 large tensor instead of 3!

pt,u)y— < pt+ 1y ifk=0o
0 otherwise

oL P(k|t,ua(t, u)
0zk., P(y | x)

16

Method 1: Efficient Implementation

Benchmarking

‘ O ri 9 i n a ‘ ‘ y p r O p O S e d by M i C r O S O'Ft [1] [1]7J.Li,R. Zhao, H. Hu, and Y. Gong, “Improving RNN Transducer Modeling for End-to-End Speech Recognition.” IEEE ASRU 2019.

RORS—

® Open source re-implementation available here: https://github.com/
csukuangtj/optimized_transducer

® Benchmark (from https://github.com/csukuangfj/transducer-loss-
benchmarking):

Method Avg. step time (us) | Peak memory (MB)
warp_transducer (ESPNet) 275852 19072.6
optimized_transducer 376954 7495.9

17

https://github.com/csukuangfj/optimized_transducer
https://github.com/csukuangfj/optimized_transducer
https://github.com/csukuangfj/optimized_transducer
https://github.com/csukuangfj/optimized_transducer
https://github.com/csukuangfj/optimized_transducer
https://github.com/csukuangfj/optimized_transducer
https://github.com/csukuangfj/transducer-loss-benchmarking
https://github.com/csukuangfj/transducer-loss-benchmarking
https://github.com/csukuangfj/transducer-loss-benchmarking
https://github.com/csukuangfj/transducer-loss-benchmarking
https://github.com/csukuangfj/transducer-loss-benchmarking
https://github.com/csukuangfj/transducer-loss-benchmarking

Method 2: Alignment-restricted training

Alignment-free training can cause token emission delays

¢ ¢ ¢ ® Remember RNN-T lattice?

C ® Since RNN-T performs alignment-tfree
training (sum over all alignments), it
A could very well learn to wait until the

C? last time-step to output all tokens.
i I ® This can cause token emission delay,

Q_' Q_’O which is bad for streaming ASR.

18

Method 2: Alignment-restricted training

Key idea: enforce alignment between input and output

¢ ¢ ¢ ® |[f we roughly know that a token
should be emitted at a particular
C time-step (+- some buffer), we can
enforce this in training.

® This means that instead of summing
. CP— C? over “all possible alignments”, we are
summing over a restricted set of
Q_' Q_'O alignments.

[2] J. Mahadeokar et al., “Alignment Restricted Streaming Recurrent Neural Network Transducer.” IEEE SLT 2020.

19

Method 2: Alignment-restricted training

Key idea: enforce alignment between input and output

time

k. what
o

assistant

hey

<bos>

Ar-RNN-T: b)=0.2,br=0.5
==+ Ground truth Path

Timels)

20

We can get the external

alignment from an
based aligner.

MM-

Method 2: Alignment-restricted training

Simple example

¢ ¢ ¢
Q — Ground truth
C
Allowed +- 1 time-step
0

Method 2: Alignment-restricted training

How is it implemented in loss computation?

Standard RNN-T a(t,u) = a(t — 1L,wh,_, [Pl + a(t,u — 1

ht,u—l[)/u]’ If Viu <1< Viu

AR-RNNT D] = {

0, otherwise

Vluzau_bl

v, =a,+b,

And likewise for backward computation (to get gradients)

22

Method 2: Alignment-restricted training

Some details

® External alignments are obtained using a hybrid model trained with cross-
entropy loss.

® These alignments are at word-level, but RNN-T output is at subword-level.
How to reconcile?

® Evenly split the time between the word-pieces.

23

Method 2: Alignment-restricted training

But how does it help in saving memory?

® Pre-compute the valid time ranges (v,,, v) for every y,

® Similar to Method 1, concatenate sequences into a 2D tensor, only keeping
the time-steps that tall in the valid ranges.

o Resultsin 2D tensor of shape (Z (b;+ b,) X U,, D)
beB

® Allows training with 4x the batch size!

24

Method 2: Alignment-restricted training

Limitation

® The major limitation here is that we need to train a hybrid ASR system to
obtain the external alignments.

25

® [3] F. Kuang et al., “Pruned RNN-T for fast, memory-efficient ASR training.” InterSpeech 2022.
etho rune -
®

Very similar to AR-RNNT, but no need for alignments

® Consider the following figure showing node gradients during RNN-T training
at the beginning and after model has been trained for a while:

0 50 100 150 200 250 300 350 400
100

80
60
40
20

1. At each time-step, only small range of nodes
have non-zero gradient.

(a) 2. Position of nodes with non-zero gradient
0 50 100 150 200 250 300 350 400) .
changes monotonically.

100
80
60
40
20

26

Method 3: Pruned RNN-T

Key idea: Restrict U for each time step

® At each time step, we can restrict U to a small set S.
® | ogittensor becomes (B, T, S, D), where S is a small number like 5.

e [f U= 100, this means a 20x memory saving.

® Question: How do we generate the set S for each time-step?

27

Method 3: Pruned RNN-T

Solution: Use a “simple” joiner to approximate S

® A 2-step process is used to compute the tinal loss.

® Recall original joiner:
h, = wWghi + Wph! + b,)
Zt,u — tht,u + bz

® \We don't want to compute this “full” joiner for all U tokens.

28

Method 3: Pruned RNN-T

Solution: Use a “simple” joiner to approximate S

® “Simple” joiner: project h° and h” to dimension D, add them (treating as log-
probabilities, and then normalize.

o a(t,u)[v] = hi[v] + hP[v] — h,,.(, 1)

(t, u) can be computed using LogSumExp trick

hIlOI' m

® |n this way, we avoid computing the large tensor (B, T, U, D)

29

Method 3: Pruned RNN-T

Obtaining pruning bounds using the simple joiner

® \We want to use the a(t, u) computed using the “simple” joiner to prune the
RNN-T lattice.

7 0—>0—>0—>0—>0—>0—>0—>0—>0 70 O O O O O O0—0—0
A A A A A A A A A A A A

6 O—>O—>O—>O—>O—>O—>O—>O—0 60 O O O O—0—0—0—0
A A A A A A A A A A A A A A

5 O—>O—>O—>0 2 O—>O—>O—>O—0 50 0 0 0O O—0—0—0—0
A A A A A A A A A A A A A A

| O—0O0—0O— . (3'4)() »O——>0O0—>0O0—>0 4 O o—0— 00— 00— 00— 0O0—>0O0—0

U A A A A A A A A A U A A A A A
7'(3.3

3 O—>O0—>0—>0 > O—>O—>O—>O0—>0 30—0—0—0—0—0 O O O
A A A A A A A A A A A A A

2 O—>O—>O—>O > O—>O—>O—>O—>O 20—0—0—0 O O O O O
A A A A l/,(g. l)A A A A A A A A A

| O—>O—>O—>O—>O—>O—>O—>0O—>O 1 O0—0—0—>0 O O O O O
A A A A A A A A A A

0 O—O0—>O0—0O0—>O—0—O0—>0—0)1IO 0 0 O O O O O O
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

t t

30

Method 3: Pruned RNN-T

Obtaining pruning bounds using the simple joiner

e Compute the derivatives y'(¢, u) and @'(¢, u) w.r.t the simple joiner loss.

® These can be interpreted as the “occupation counts” tfor taking the upward
and rightward transitions.

31

Method 3: Pruned RNN-T

Obtaining pruning bounds using the simple joiner

® Suppose S =4 andp, =2, fort =3.

® This means that we will retain u ={2,3,4,5}

>0
>0

/
/

>
>

7
J

>
>

[O—0—>0—>0—>0—>0—>0—>0—>0 /0O O O O O
A A A A A A A A A
6 O—0—0—>0—>0—>0—>0—>0—>0 ctO O O O O0—0O
A A A A A A A A A A
5 O OO0 O O—>O—>O—>0 50 O O O O—0
A A A A A A A A A A A
@'(3.4)
| O—0O0—0O— O—0O0—m0O0—>0O0—0 4 O o—0—m0O0—m0O——
U A A A A A A A A A U A A A A
} O—m0O0—m0O0—— 7’(3'%)() >»O——>0O0—>0—>0 ; O—m0O—m0O0—0O0—>0O0—>0
A A A A A A A A A A A A A
2 O—>O—>O—>0 O O—>O—>O—>0 2 O—0—0—>0 O
A A A A,,’(g. l)A A A A A A A A A
I O—>0—>0—>0—>0—>0—>0—>0—>0 I O—>0—>0—>0 O
A A A A A A A A A A
) O—O0—>0—0—>0—>0—>0—>0—0 00O O O O O
0 | 2 3 1 3 0 7 8 0 1 2 3 1
t t

32

O

Method 3: Pruned RNN-T

Obtaining pruning bounds using the simple joiner

® Minimum retained log-prob for this

choice of p, ¢'(t2) + P't.3) + P'(t4) + P'(.5) — y'(2.1

® Compute argmax for all values of p,

® Adjustthe bounds to ensure
continuity. For example, consecutive
time-steps should be monotonically
Increasing.

33

)

BRI
0 O O O O0—0—0—0

Method 3: Pruned RNN-T

Benchmarking

® Implemented in k2: https://github.com/k2-tsa/k2

® Benchmark (from https://github.com/csukuangti/transducer-loss-

benchmarking):
Table 1: Speed and memory usage for different RNN-T loss im-
plementations using fixed batch size 30.
Average time Peak memory
Standard RNN-T using modular PyTorch %.._ per batch (ms) usage (GB)
o | | “torchaudio 544 18.48
Efficient 2-D tensor using CUDA \optimized_transducer 377 739
Standard RNN-T using CUDA 4 warp-transducer 276 18.63
| | SpeechBrain 459 18.63
Standard RNN-T using NumbaWpruned RNN-T 64 3.73

Pruned RNN-T using CUDA*

34

https://github.com/k2-fsa/k2
https://github.com/csukuangfj/transducer-loss-benchmarking
https://github.com/csukuangfj/transducer-loss-benchmarking
https://github.com/csukuangfj/transducer-loss-benchmarking
https://github.com/csukuangfj/transducer-loss-benchmarking
https://github.com/csukuangfj/transducer-loss-benchmarking
https://github.com/csukuangfj/transducer-loss-benchmarking

AR-RNNT vs. Pruned RNN-T

® Basically, we are using the “simple” joiner output to get an approximate
alignment between the encoder output and the prediction network output
(instead of an externally provided alignment as in AR-RNNT).

® \\e then use this approximate alignment to prune the lattice.

® Overall, AR-RNNT and pruned RNNT are the same idea but implemented
differently.

35

Key take-aways

® Transducers are most popular for ASR in industry
® But they require large memory (due to BxTxUxD tensor)
® Efficiently storing the logits by removing padding saves cost

® \We can also leverage the fact that there is an obvious alignment between
encoder and decoder to prune the lattice

® This alignment can either be obtained from a hybrid system (AR-RNNT)

® Or computed using a simple joiner in first pass (pruned RNNT)

36

