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https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-other



Motivation

Single-user applications Multi-user applications

Smart Assistants

Customer Service

Language Learning

Voice-based Search

Meeting summaries Collaborative Learning
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Child language development



Motivation
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LibriSpeech Switchboard AMI CHiME-6

Clean, read speech 
Single speaker

Telephone 
Conversational

Meeting 
Multi-speaker

Dinner party 
Multi-speaker

What changed? 

• Conversational speech 

• Far-field audio: noise and reverberation 

• Overlapping speakers



Motivation
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The Cocktail Party Problem
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Tasks within the Cocktail Party



Tasks within the Cocktail Party
Speaker Diarization

Speaker 
Diarization
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He et al. Target-speaker voice activity detection with 
improved i-vector estimation for unknown number of 
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Target-speaker  
Extraction/Recognition

Zmolikova et al. Auxiliary loss function for target 
speech extraction and recognition with weak 
supervision based on speaker characteristics. 
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Outline of the talk
“Modular” and “end-to-end” perspectives

1. Problem statement 

2. Modular system 

(i) Probabilistic formulation 

(ii) Meeting transcription pipeline 

3. End-to-end system 

(i) Streaming Unmixing and Recognition Transducer (SURT) 

(ii) Speaker-attributed transcription with SURT 

4. Conclusion
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“Who spoke what?”
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Problem Statement
Multi-talker speaker-attributed ASR

• Input: long unsegmented (possibly multi-channel) recording containing 
multiple speakers. 

• Output: 

• Transcription of the recording (speech recognition) 

• Speaker attribution (diarization) 

• Additional constraints: streaming, i.e., real-time transcription 

• We specifically look at “meetings”: LibriCSS, AMI, ICSI

14



Problem Statement
Corpora

Corpus Name LibriCSS AMI ICSI

Session length 10 minutes 30-45 minutes ~60 minutes

Total size of corpus 10 hours 100 hours 70 hours

Microphones available 7-channel circular array 2 linear arrays with 8 
channels each + headset 

mics

6 far-field + headset 
mics

Number of speakers 8 4 3-10

Overlap ratio 0 to 40% ~20% ~14%

Language English English English

Simulated (replayed) Real meetings Real meetings
15



Problem Statement
Evaluation metrics

• Speech Recognition 

‣ Word error rate (WER) = insertion + deletion + substitution (Levenshtein distance) 

• Speaker Diarization 

‣ Diarization error rate (DER) = missed speech + false alarm + speaker confusion 

• Multi-talker ASR 

‣ ORC-WER: WER for overlapping speech without speaker attribution 

‣ cpWER: WER for overlapping speech with speaker attribution

16



Part I: Modular System

17



Probabilistic formulation
Input and Output

Input: recording containing multiple speakers Output: speaker-attributed transcripts
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Good morning.

How are you doing?

Hello.
R W



Instead, we model an intermediate solution
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Good morning.

How are you doing?

Hello.
R W

Good morning.

How are you doing?

Hello.

Y = (ΔN
1 , uN

1 , yN
1 )

Deterministic mapping

Time-marked segments Speaker labels Segment transcript

Probabilistic formulation



Maximum a posteriori
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Probabilistic formulation

̂Y = arg max P(Y ∣ R)

P(Y ∣ R) = P (ΔN
1 , uN

1 , yN
1 ∣ R)

= P (ΔN
1 , uN

1 ∣ R) P (yN
1 ∣ R, ΔN

1 , uN
1 )



Marginalizing over “target-speaker signals”
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Probabilistic formulation

P (yN
1 ∣ R, ΔN

1 , uN
1 ) = ∫XN

1

P (XN
1 , yN

1 ∣ R, ΔN
1 , uN

1 )

Xn
Target-speaker signal for segment n



Marginalizing over “target-speaker signals”
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Probabilistic formulation

P (yN
1 ∣ R, ΔN

1 , uN
1 ) = ∫XN

1

P (XN
1 , yN

1 ∣ R, ΔN
1 , uN

1 )

= ∫XN
1

P (XN
1 ∣ R, ΔN

1 , uN
1 ) P (yN

1 ∣ R, ΔN
1 , uN

1 , XN
1 )



Conditional independence assumptions
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Probabilistic formulation

P (yN
1 ∣ R, ΔN

1 , uN
1 ) = ∫XN

1

P (XN
1 , yN

1 ∣ R, ΔN
1 , uN

1 )

= ∫XN
1

P (XN
1 ∣ R, ΔN

1 , uN
1 ) P (yN

1 ∣ R, ΔN
1 , uN

1 , XN
1 )

= ∫XN
1

N

∏
j=1

P (Xj ∣ R, Δj, uj)
N

∏
j=1

P (yj ∣ Xj)

Target-speaker signal for a segment is 
independent of the signals for other segments.

Transcript for a segment only depends on 
the target-speaker signal for that segment.



Putting it all together
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Probabilistic formulation

̂Y = arg max
ΔN

1 ,uN
1 ,yN

1

P (ΔN
1 , uN

1 ∣ R)∫XN
1

N

∏
j=1

P (Xj ∣ R, Δj, uj)
N

∏
j=1

P (yj ∣ Xj)

Computationally intractable!



The “modular” solution
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Probabilistic formulation
̂Y = arg max

ΔN
1 ,uN

1 ,yN
1

P (ΔN
1 , uN

1 ∣ R)∫XN
1

N

∏
j=1

P (Xj ∣ R, Δj, uj)
N

∏
j=1

P (yj ∣ Xj)

Δ̂N
1 , ̂uN

1 = arg max
ΔN

1 ,uN
1

P (ΔN
1 , uN

1 ∣ R)
speaker diarization

STEP 1:



The “modular” solution
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Probabilistic formulation
̂Y = arg max

ΔN
1 ,uN

1 ,yN
1

P (ΔN
1 , uN

1 ∣ R)∫XN
1

N

∏
j=1

P (Xj ∣ R, Δj, uj)
N

∏
j=1

P (yj ∣ Xj)

Δ̂N
1 , ̂uN

1 = arg max
ΔN

1 ,uN
1

P (ΔN
1 , uN

1 ∣ R)
speaker diarization

STEP 1:

STEP 2:
X̂j = g(R, Δ̂j, ̂uj)

target speaker extraction



The “modular” solution
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Probabilistic formulation
̂Y = arg max

ΔN
1 ,uN

1 ,yN
1

P (ΔN
1 , uN

1 ∣ R)∫XN
1

N

∏
j=1

P (Xj ∣ R, Δj, uj)
N

∏
j=1

P (yj ∣ Xj)

Δ̂N
1 , ̂uN

1 = arg max
ΔN

1 ,uN
1

P (ΔN
1 , uN

1 ∣ R)
speaker diarization

STEP 1:

STEP 2:
X̂j = g(R, Δ̂j, ̂uj)

target speaker extraction

STEP 3:
P (yN

1 ∣ R, ΔN
1 , uN

1 ) ≈
N

∏
j=1

P (yj ∣ X̂j)
speech recognition



Based on the modular approach
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Meeting transcription pipeline

Speaker 
Diarization

Target-speaker 
extraction

Speech 
recognition

Speech 
recognition

Diarization should correctly identify 
all speakers (including overlaps).

TSE module should be efficient for 
extracting signals for all segments.



Contribution #1: Overlap-aware spectral clustering
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Meeting transcription pipeline

Speaker 
Diarization

• Clustering-based diarization usually assumed single-
speaker segments, which leads to high missed speech. 

• We propose a new overlap-aware diarization method, 
based on a graphical formulation of spectral 
clustering. 

• This new method can incorporate an external overlap 
detector.



Contribution #1: Overlap-aware spectral clustering
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Meeting transcription pipeline

12% relative DER improvement on 
AMI over spectral clustering baseline.

D
ER

 (%
)

0

7.5

15

22.5

30

SC AHC VBx OASC

10.56.378.4

2.2
11.3

19.919.919.9

Missed speech False alarm Speaker conf.

Assumes no overlap



Contribution #1: Overlap-aware spectral clustering
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Meeting transcription pipeline
D

ER
 (%

)

0

7.5

15

22.5

30

VB + overlap RPN OASC

10.58.37.2

2.27.73.6

11.39.5
13

Missed speech False alarm Speaker conf.

Does not require matching training 
data or initialization with other 
diarization systems.



Contribution #2: GPU-accelerated Guided Source Separation
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Meeting transcription pipeline

Yt,f

De-reverberation using 
Weighted Prediction Error 

Remove the late 
reverb

Mask estimation using  
mixture models

Mask-based MVDR 
beamforming

Estimate T-F masks for all 
speakers and noise

Use T-F masks to extract 
desired signal from input

• GSS is a signal processing method for target-
speaker extraction. 

• Contains several iterative parts, e.g., mask 
estimation using complex angular GMMs. 

• Implemented 300x faster GPU-accelerated 
GSS using smart batching and caching 
strategies. 

• Processing time for CHiME-6 dev set reduced 
from 19.3h (using 80 CPUs) to 1.3h (using 4 
GPUs)



Results on LibriCSS
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Meeting transcription pipeline
10 minute sessions, 0-40% overlapping speech, mixed LibriSpeech utterances

Diarization TSE DER (%) cpWER (%)

Spectral 
clustering None 14.9 18.3



Results on LibriCSS

34

Meeting transcription pipeline
10 minute sessions, 0-40% overlapping speech, mixed LibriSpeech utterances

Diarization TSE DER (%) cpWER (%)

Spectral 
clustering None 14.9 18.3

Overlap-
aware SC None 11.3 17.1

 24.2%  6.6%



Results on LibriCSS
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Meeting transcription pipeline
10 minute sessions, 0-40% overlapping speech, mixed LibriSpeech utterances

Diarization TSE DER (%) cpWER (%)

Spectral 
clustering None 14.9 18.3

Overlap-
aware SC

None

11.3

17.1

GSS 12.1
 24.2%

 33.9%



Results on AMI
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Meeting transcription pipeline
30 minute sessions, ~20% overlapping speech, real 4-person meetings

Diarization TSE DER (%) cpWER (%)

Spectral 
clustering None 25.5 38.5

Overlap-
aware SC

None

23.7

38.5

GSS 31.0



Qualitative analysis
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Meeting transcription pipeline
AMI ES2011a (from 817s to 833s)

Reference

I ALSO THINK THOUGH THAT IT SHOULDN'T HAVE TOO MANY 
BUTTONS 'CAUSE I HATE THAT WHEN THEY HAVE TOO MANY 
BUTTONS AND I MEAN I KNOW IT HAS TO HAVE ENOUGH 

FUNCTIONS BUT LIKE I DON'T KNOW YOU JUST HAVE LIKE 
EIGHT THOUSAND BUTTONS AND YOU'RE LIKE NO YOU NEVER 

USE HALF OF THEM | SO

YEAH I AGREE | B BUTTON AND THE F BUTTON THEY DON'T 
DO ANYTHING

UM OH WE JUST | YEAH

YEAH YEAH YEAH

Sp
ea

ke
rs



Qualitative analysis
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Meeting transcription pipeline
AMI ES2011a (from 817s to 833s)

Reference Spectral clustering + No GSS

I ALSO THINK THOUGH THAT IT SHOULDN'T HAVE TOO MANY 
BUTTONS 'CAUSE I HATE THAT WHEN THEY HAVE TOO MANY 
BUTTONS AND I MEAN I KNOW IT HAS TO HAVE ENOUGH 

FUNCTIONS BUT LIKE I DON'T KNOW YOU JUST HAVE LIKE 
EIGHT THOUSAND BUTTONS AND YOU'RE LIKE NO YOU NEVER 

USE HALF OF THEM | SO

I ALSO THINK THOUGH THAT IT SHOULDN'T HAVE TOO MANY 
BUTTONS 'CAUSE I HATE THAT ONLY HAVE TOO MANY 
BUTTONS AND I MEAN I KNOW IT HAS TO HAVE MANY 

FUNCTIONS BUT LIKE | I DUNNO JUST HAVE LIKE EIGHT 
THOUSAND BUTTONS AND YOU'RE LIKE NO YOU NEVER USE 

HALF OF THEM

YEAH I AGREE | B BUTTON AND THE F BUTTON THEY DON'T 
DO ANYTHING —

UM OH WE JUST | YEAH —

YEAH YEAH YEAH —

 cpWER = 40.5%

Sp
ea

ke
rs



Qualitative analysis
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Meeting transcription pipeline
AMI ES2011a (from 817s to 833s)

Reference Overlap-aware Spectral clustering + No GSS

I ALSO THINK THOUGH THAT IT SHOULDN'T HAVE TOO MANY 
BUTTONS 'CAUSE I HATE THAT WHEN THEY HAVE TOO MANY 
BUTTONS AND I MEAN I KNOW IT HAS TO HAVE ENOUGH 

FUNCTIONS BUT LIKE I DON'T KNOW YOU JUST HAVE LIKE 
EIGHT THOUSAND BUTTONS AND YOU'RE LIKE NO YOU NEVER 

USE HALF OF THEM | SO

I ALSO THINK THAT IT SHOULDN'T HAVE TOO MANY BUTTONS 
'CAUSE I HATED NOT ONLY HAVE TOO MANY BUTTONS AND 
THINGS BUT I MEAN I KNOW IT HAS TO HAVE NO MANY 

FUNCTIONS BUT LIKE | I DUNNO JUST HAVE LIKE EIGHT 
THOUSAND BUTTONS AND YOU'RE LIKE YOU KNOW YOU NEVER 

USE HALF THE TIME

YEAH I AGREE | B BUTTON AND THE F BUTTON THEY DON'T 
DO ANYTHING

IT SHOULDN'T HAVE TOO MANY BUTTONS 'CAUSE I HATE 
THAT ONLY HAVE TOO MANY BUTTONS AND THINGS BUT I 
MEAN I KNOW IT HAS TO HAVE NO MANY FUNCTIONS BUT

UM OH WE JUST | YEAH —

YEAH YEAH YEAH —

 cpWER = 72.2%

Sp
ea

ke
rs



Qualitative analysis
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Meeting transcription pipeline
AMI ES2011a (from 817s to 833s)

Reference Overlap-aware Spectral clustering + GSS

I ALSO THINK THOUGH THAT IT SHOULDN'T HAVE TOO MANY 
BUTTONS 'CAUSE I HATE THAT WHEN THEY HAVE TOO MANY 
BUTTONS AND I MEAN I KNOW IT HAS TO HAVE ENOUGH 

FUNCTIONS BUT LIKE I DON'T KNOW YOU JUST HAVE LIKE 
EIGHT THOUSAND BUTTONS AND YOU'RE LIKE NO YOU NEVER 

USE HALF OF THEM | SO

I ALSO THINK THOUGH THAT IT SHOULDN'T HAVE TOO MANY 
BUTTONS 'CAUSE I HAD THAT ONLY HAVE TOO MANY BUTTONS 
AND I MEAN I KNOW IT HAS TO HAVE ENOUGH FUNCTIONS 
BUT LIKE | I DUNNO JUST HAVE LIKE EIGHT THOUSAND 
BUTTONS AND YOU'RE LIKE NO YOU NEVER USE HALF OF 

THEM

YEAH I AGREE | B BUTTON AND THE F BUTTON THEY DON'T 
DO ANYTHING

S YEAH I AGREE M THE BUTTON ON F BUTTON THEY DON'T 
DO ANYTHING

UM OH WE JUST | YEAH —

YEAH YEAH YEAH —

 cpWER = 29.1%

Sp
ea

ke
rs
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Modular system
Limitations

• Modules are independently optimized for different objectives 

• Higher accumulated latency 

• Error propagation through modules 

• Requires more engineering efforts to maintain 

• Cannot be used for streaming or single-channel inputs



Part II: End-to-end System
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Preliminary
Neural transducers for ASR

43

• Encoder converts input audio to high-
dimensional representation 

• Predictor is an autoregressive model 
that encodes input text 

• Joiner combines audio and text 
representations to predict next token

Encoder Predictor 

Joiner 

Xyu−1
1

gu−1
1 fT

1

Softmax

zt,u

p(yu ∣ X, yu−1
1 )

Hello, how are you?

P(y ∣ X) = ∑
a∈ℬ−1(y)

P(a ∣ X) = ∑
a∈ℬ−1(y)

T

∏
t=1

P(at ∣ X, a1:t−1)



Continuous, streaming, multi-talker ASR
Using neural transducers

44

• Continuous: does not rely on external segmentation 

• Streaming: does not use right context; overlapping speech is transcribed 
simultaneously 

• Assume we have  speakers in the input audioK



Continuous, streaming, multi-talker ASR
Option 1: Single output stream per speaker

45

• Assume each speaker’s transcript is conditionally independent of others 
given the audio

Good morning.

How are you doing?

Hello.

Y = {ỹ1, …, ỹK}

P(Y ∣ X) = P(ỹ1, …, ỹK ∣ X) ≈
K

∏
k=1

P(ỹk ∣ X)

X

Multi-talker ASR



Continuous, streaming, multi-talker ASR
Option 1: Single output stream per speaker

46

• Limitations: 

1. Number of output channels is , i.e., model depends on input 

2. Requires  number of transducer loss computations to solve 
speaker permutation problem at the output 

• Need to find a solution with fixed number of output channels

K

𝒪(K2)



Continuous, streaming, multi-talker ASR
Option 2: Graph coloring approach
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Utterance group 1 Utterance group 2

• Graph with each utterance as a node 

• If two utterances overlap, connect them with an edge



Continuous, streaming, multi-talker ASR
Option 2: Graph coloring approach

48

Utterance group 1 Utterance group 2

• If the graph is colorable with  colors, then the utterances can be mapped to  channels without 
overlaps. 

• Overlaps of 3 or more speakers are extremely rare, so we can assume 2 output channels 
henceforth.

C C



Continuous, streaming, multi-talker ASR
Permutation invariant training (PIT)

49

Y1

Y2

P(y1, …, yN ∣ X) = max
ζ

P(Y1, Y2 ∣ X)

≈ max
ζ

P(Y1 ∣ X)P(Y2 ∣ X),

• : all possible assignment of  on to two output channels 

• Number of assignments is exponential in the number of utterance groups!

ζ y1, …, yN

Y1

Y2

ℒpit(y1:N, X; Θ) = min
ζ

[−log PΘ(Y1 ∣ X) − log PΘ(Y2 ∣ X)]



Continuous, streaming, multi-talker ASR
Heuristic error assignment training (HEAT)

50

Y1

Y2

P(y1, …, yN ∣ X) = P(Y1 ∣ X)P(Y2 ∣ X)

• Assign utterances to first available channel in order of start time

ℒheat(y1:N, X; Θ) = − log PΘ(Y1 ∣ X) − log PΘ(Y2 ∣ X)



Streaming Unmixing and Recognition Transducer (SURT)
Model

51

Transducer

Transducer

Recognition

Masking 
Network

M1

M2

⊗
⊗

Unmixing

X

H1

H2

Y1

Y2
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1. How to train the model efficiently? 

2. What kind of errors can happen with such models? 

3. Can the model work well on real meetings?

Streaming Unmixing and Recognition Transducer (SURT)
Some challenges

Transducer

Transducer

Recognition

Masking 
Network

M1

M2

⊗
⊗

Unmixing

X

H1

H2

Y1

Y2



LibriSpeech 
utterances

Making training efficient
#1: Shorter training mixtures

53

Force 
align

LibriSpeech 
segments

Cut at long 
pauses

Select segments  
at random Mix 

Problem 1

• Create synthetic mixtures from sub-segments instead of full-utterances 

• Multiple turns of conversation more important than long single-speaker 
regions



Making training efficient
#2: Zipformer encoder
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1. Subsampling in 
intermediate layers 

2. Shared self-attention 
weights in each 
zipformer “block” 

3. Other things (e.g., 
ScaledAdam)

8x downsampled

Problem 1

Yao, Zengwei et al. “Zipformer: A faster and better encoder for automatic speech recognition.” ICLR, 2024.

Encoder Predictor 

Joiner 

Xyu−1
1

gu−1
1 fT

1

Softmax

zt,u

p(yu ∣ X, yu−1
1 )

Hello, how are you?



Making training efficient
#3: Pruned transducer loss
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• Original transducer loss computes sum over 
all possible alignments 

• Instead, pruned loss sums over a subset of 
alignments:

Kuang, F., Guo, L., Kang, W., Lin, L., Luo, M., Yao, Z., & Povey, D. Pruned RNN-T for fast, memory-efficient ASR training. Interspeech 2022.

Encoder Predictor 

Joiner 

Softmax

Simple 
Joiner 

Pruning 
bounds

Problem 1

P(y ∣ X) = ∑
a∈ℬ−1

pruned(y)

P(a ∣ X)

Xyu−1
1

gu−1
1 fT

1

zt,u

p(yu ∣ X, yu−1
1 )



Making training efficient
#4: Single-speaker pre-training
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Transducer
LibriSpeech 
utterances

model.load_state_dict()

Problem 1

Transducer

Transducer

Recognition

Masking 
Network

M1

M2

⊗
⊗

Unmixing

X

H1

H2

Y1

Y2



Leakage and omission errors
Caused by sparse overlaps

57

Leakage

Channel 1

Channel 2

Channel 1

Channel 2

Omission

Hey, welcome back.

Hi, how are you?

Thanks.

Hey, welcome back. Thanks. are you

Hi, how are you?

More insertion errors

Hey, welcome back.

Hi, how are you?

Thanks.

Hey, welcome Thanks.

how are you?(Hi)

(back)

More deletion errors

Problem 2



Leakage and omission errors
#1: Architectural changes

58

1. Masking network: use dual-path 
LSTM, which is better for 
separation 

2. Encoder: use “branch tying” 

3. Decoder: use “stateless” 
prediction network

Encoder 

Predictor 

Joiner 

H1

Y1

g1
1:U

f1
1:T

Softmax

z1
t,u

Encoder 

Predictor 

Joiner 

Softmax

z2
t,u

Branch 1 Branch 2

Problem 2

H2

Y2

f2
1:T

g2
1:U

LSTM 



Leakage and omission errors
#2: Masking loss and encoder CTC loss

59

We use 2 auxiliary loss functions: 

1. CTC loss at the output of the encoder (for better alignment) 

2. MSE loss on the masked filterbanks (for better separation)

ℒ = ℒ′ rnnt+λctcℒctc + λmaskℒmask

Problem 2



Performance on real meetings
#1: Simulation using real meeting statistics
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LibriSpeech 
segments

Select segments  
at random Mix 

60

AMI + ICSI 
sessions

Statistics

Model
Training

Problem 3



Performance on real meetings
#2: Domain adaptation
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LibriSpeech 
segments

Select segments  
at random Mix 

AMI + ICSI 
sessions

Statistics

Model
Training

Adapted 
model

Adaptation

Problem 3



Results on LibriCSS
#1: SURT outperforms larger multi-turn RNN-T model
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W
ER

 (%
)

0

10

20

30

40

Overlap Ratio

0L 0S OV10 OV20 OV30 OV40

MT-RNNT SURT

Model # params (M) WER (%)

MT-RNNT 81.0 22.6

SURT 37.9 16.9

Sklyar, Ilya et al. “Multi-Turn RNN-T for Streaming Recognition of Multi-Party Speech.” IEEE ICASSP 2022: 8402-8406.



Results on LibriCSS
#2: Effect of architectural changes

63

W
ER

 (%
)

0

12.5

25

37.5

50

Overlap Ratio

0L 0S OV10 OV20 OV30 OV40

SURT
w/o DP-LSTM
w/o branch tying
w/o stateless decoder

• Most improvement comes from using DP-LSTM in masking network.

WER (%)
18.5
28.3
22.4
19.9



Results on LibriCSS
#3: Effect of auxiliary objectives
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W
ER

 (%
)

0

10

20

30

40

Overlap Ratio

0L 0S OV10 OV20 OV30 OV40

No aux. loss
+ CTC loss
+ Mask loss
+ CTC + Mask

WER (%)
18.5
17.5
17.1
15.2



Results on LibriCSS
#4: Single speaker pre-training is critical
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W
ER

 (%
)

0

25

50

75

100

Epoch

1 5 9 13 17 21 25 29

w/ pre-train w/o pre-train



Results on real meetings
AMI and ICSI

66

IHM-Mix SDM MDM 
(beamform)

SURT 36.8 62.5 44.4

 + adapt. 35.1 44.6 41.4

IHM-Mix SDM

SURT 27.8 59.7

 + adapt. 24.4 32.2

AMI ICSI
IHM-Mix = close talk, SDM = far-field (single-channel)



Speaker attribution with SURT
How to predict speaker labels with ASR tokens?
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Transducer

Transducer

Recognition

Masking 
Network

M1

M2

⊗
⊗

Unmixing

X

H1

H2

Y1

Y2

Good morning.

How are you doing?

Hello.



Speaker attribution with SURT
Heuristic error assignment training for speakers

68

Y1

Y2

Good morning.

How are you doing?

Hello.

S1

S2

_GOOD _MORNING _HE LL O

_HOW _ARE _YOU _DO ING

1 1 3 3 3

2 2 2 2 2

• Use the same 2-branch strategy, but predict speaker labels instead of ASR 
tokens 

• How to do both tasks jointly?



Speaker attribution with SURT
Auxiliary speaker encoder
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Y1 S1

_GOOD _MORNING _HE LL O 1 1 3 3 3

Encoder 

Predictor 

Joiner g1:U

f1:T

Softmax

zt,u

Transducer

Transducer

Recognition

Masking 
Network

M1

M2

⊗
⊗

Unmixing

X

H1

H2

H1

Auxiliary 
Encoder 

Aux. Joiner 

faux
1:T

Softmax

zaux
t,u

hl



Speaker attribution with SURT
Synchronizing speaker labels with ASR tokens
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Y1 S1

_GOOD _MORNING _HE LL O 1 1 3 3 3

Encoder 

Predictor 

Joiner g1:U

f1:T

Softmax

zt,u

H1

Auxiliary 
Encoder 

Aux. Joiner 

faux
1:T

Softmax

zaux
t,u

hl

• At inference time, it is not necessary 
that both output streams emit same 
number of tokens. 

• Even if they do, they may not be frame 
synchronous.

<blk> <blk> <blk>

<blk> <blk> <blk> <blk>

Y1

S1

_GOOD _MORNING _HE LL O

1 1 3 3



Speaker attribution with SURT
Hybrid autoregressive transducer (HAT)

71

Variani, Ehsan et al. “Hybrid Autoregressive Transducer (HAT).” IEEE ICASSP 2020.

RNN-Transducer HAT

P(at ∣ ft
1, gu(t)−1

1 ) = {
bt,u, if at = ϕ,
(1 − bt,u) Softmax(zt,u[1 :]), otherwiseP(at ∣ ft

1, gu(t)−1
1 ) = Softmax(zt,u)

• Multinomial distribution over blank 
and non-blank tokens 

• Cannot model blank probability 
separately

bt,u = σ(zt,u[0])

• Bernoulli distribution for blank; 
multinomial over non-blank tokens 

• Probability of blank given directly by bt,u



Speaker attribution with SURT
Synchronization by sharing <blk>
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Y1 S1

_GOOD _MORNING _HE LL O 1 1 3 3 3

Encoder 

Predictor 

Joiner g1:U

f1:T

Softmax

zt,u[1 :]

H1

Auxiliary 
Encoder 

Aux. Joiner 

faux
1:T

Softmax

zaux
t,u

hl

• If ASR branch emits <blk> do the 
same for speaker branch 

• This is achieved by using HAT-style 
blank factorization, and sharing blank 
logit between ASR and speaker 
branch

ℒhat

σ

ℒhat

zt,u[0]

bt,u



Mic Setting ORC-WER WDER cpWER

IHM-Mix 34.9 9.3 42.3

SDM 43.2 10.9 50.3

MDM (beamformed) 40.5 9.9 47.3

Speaker attribution with SURT
Results on AMI (evaluation on utterance groups)

73

Utterance group = set of utterances connected by overlaps or short pauses

Modular System 
cpWER

—

38.5

31.0

OfflineStreaming



Speaker attribution with SURT
From utterance groups to full sessions

74

Utterance group 1 Utterance group 2
Hey, welcome back. Thanks

Sorry, I was late.

How are you? I’m good

SURT

Hey, welcome back.

Thanks

How are you?

Sorry, I was late.

I’m good

1

2

1

2

3

• How to maintain relative 
speaker labels when 
processing different 
utterance groups within 
the same session?

SURT



Speaker attribution with SURT
Speaker prefixing approach

75

SURT

Hey, welcome back.

Thanks

How are you?

Sorry, I was late.

I’m good

1

2

1

3

2

• Extract high-confidence 
frames of predicted 
speakers and prefix them 
in front of current input. 

• Remove prefixed part 
from encoder 
representation.

SURT



Speaker attribution with SURT
Evaluation on AMI IHM-Mix setting
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Evaluation Method cpWER

Utterance group SURT w/o speaker prefix 42.3

Full session

SURT w/o speaker prefix 100.1

SURT w/ speaker prefix  
(128 frames = 1.28s per speaker) 82.8

+ enrollment 53.8

“Enrollment” = using small chunk from speaker’s enrollment speech for prefixing



Conclusions and Future Work

77



Conclusions

78

• Modular system is an approximate solution for the probabilistic formulation of 
multi-talker ASR problem. 

• Provides flexibility of components, but errors propagate. 

• For end-to-end modeling, we extended neural transducers for multi-talker ASR, 
resulting in the SURT model. 

• We demonstrated how to train SURT efficiently, and how to jointly predict ASR 
tokens and speaker labels with the model. 

• Single model to perform speaker-attributed transcription!



Future Work

79

Improving the accuracy 

• Full session evaluation has high error rates  speaker tracking with latent embeddings? 

• Using larger models  teacher-student training for the encoder? 

• Search errors in ASR/speaker modeling  speaker-guided beam search? 

• Rescoring the whole conversation  possible application of LLMs? 

Improving the efficiency 

• Two branch strategy is wasteful  multi-blank modeling? 

• Deeper integration of ASR and speaker encoders  revisit joint training?

→

→

→

→

→

→

MODELING

MODELING

TRAINING

DECODING

DECODING

TRAINING



Thanks!



Extra Slides
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Overlap-aware Spectral Clustering

82



Clustering-based diarization

…

…

…

Embedding extractor Pair-wise Scoring

Clustering  
(+ resegmentation)

Diarization labels

Affinity 
matrix

Speech Activity 
Detection

Overview of the process

83



Clustering paradigm assumes 
single-speaker segments 

So overlapping speakers are completely ignored!

84

“Roughly 8% of the absolute error in our systems was from overlapping speech … it will likely require a complete rethinking of the diarization 
process … This is an important direction, but could not be addressed …” 

- JHU team (2018)

“Given the current performance of the systems, the overlapped speech gains more relevance … more than 50% of the DER in our best systems … 
has to be addressed in the future …” 

- BUT team (2019)



Overlap-aware spectral clustering

…

…

…

Embedding extractor Pair-wise Scoring

Overlap-aware spectral 
clustering

Diarization labels

Affinity matrix

Speech Activity DetectionOverlap 
Detector

85



The basic clustering problem: a graph view

x-vector

Cosine similarity

86

New formulation for spectral clustering



The basic clustering problem: a graph view

Edge weights within a group

Edge weights across groups

Speaker A

Speaker B

87

New formulation for spectral clustering



The basic clustering problem: a graph view

Edge weights within a group

Edge weights across groups
maximize

maximize ϵ(X) =
1
K

K

∑
k=1

XT
k AXk

XT
k DXk

subject to X ∈ {0,1}N×K,
X1K = 1N .

88

K speakers, N segments

New formulation for spectral clustering



The basic clustering problem: a graph view

maximize ϵ(X) =
1
K

K

∑
k=1

XT
k AXk

XT
k DXk

subject to X ∈ {0,1}N×K,
X1K = 1N .

#segments

#speakers

89

Final cluster assignment matrix

New formulation for spectral clustering



This problem is NP-hard!

maximize ϵ(X) =
1
K

K

∑
k=1

XT
k AXk

XT
k DXk

subject to X ∈ {0,1}N×K,
X1K = 1N .

Remove the discrete constraints to make the problem solvable

90

New formulation for spectral clustering



Relaxed problem has a set of solutions

maximize ϵ(X) =
1
K

K

∑
k=1

XT
k AXk

XT
k DXk

subject to X ∈ {0,1}N×K,
X1K = 1N .

Set of solutions to the relaxed problem

and its orthonormal 
transforms

91

Taking the Eigen-decomposition of D-1A

New formulation for spectral clustering



Now we need to discretize this solution!

Find a matrix which is discrete and also close 
to any one of the orthonormal 
transformations of the relaxed solution

and its orthonormal 
transforms

subject to X ∈ {0,1}N×K,
X1K = 1N .

92

New formulation for spectral clustering



Now we need to discretize this solution!

and its orthonormal 
transforms

93

Iterate until convergence

Non-maximal 
suppression

Singular Value 
Decomposition

New formulation for spectral clustering



Let us now make it overlap-aware
Suppose we have vOL

Discrete constraint is modified to include 
overlap detector output

and its orthonormal 
transforms

subject to X ∈ {0,1}N×K,
X1K = 1N + vOL .

94

Overlap Detector



Let us now make it overlap-aware
Modify non-maximal suppression to pick top 2 speakers

and its orthonormal 
transforms
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Iterate until convergence

Modified non-maximal suppression

Singular Value 
Decomposition



GPU-accelerated GSS

96



Guided source separation
Consists of 3 main steps

97

Yt,f = ∑
k

Xearly
t,f,k + ∑

k

Xtail
t,f,k + Nt,f

Sum of speaker signals

Sum of reverb tails

Noise

Yt,f

De-reverberation using Weighted 
Prediction Error (WPE)

Remove the late reverb

Mask estimation using  
mixture models

Mask-based MVDR beamforming

Estimate T-F masks for all 
speakers and noise

Use T-F masks to extract 
desired signal from input

Boeddeker, Christoph et al. “Front-end processing for the CHiME-5 dinner 
party scenario.” CHiME Workshop, 2018 .

https://github.com/fgnt/pb_chime5



Guided source separation
Limitations with original implementation
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• Several iterative parts, e.g., mask estimation using complex angular GMMs. 

• All implementation on CPU (with NumPy). 

• Example: Applying GSS on CHiME-6 dev set takes ~20h with 80 jobs!



Guided source separation
GPU-acceleration + engineering tricks

99

Hello How are you doing?Hi, good afternoon.

1. CPU-based data-loader performs 
smart batching of segments

2. STFT computation, WPE, mask 
estimation on GPU using CuPy

3. Batched processing of STFT frequency bins

OLD

NEW

Mask Estimation

4. einsum path caching

Cache optimized path 
on first iteration. 

Use same path on 
subsequent 
iterations. 

https://github.com/desh2608/gss

https://github.com/desh2608/gss


Guided source separation
Speed-up

100

• Comparison on CHiME-6 dev set 

• Old GSS: Takes 19.3 hours using 80 jobs 

• New GSS: Takes 1.3 hours using 4 GPUs  

• Part of the official baseline in CHiME-7 DASR challenge: https://
www.chimechallenge.org/current/task1/index

CHiME-7 DASR Baseline

https://www.chimechallenge.org/current/task1/index
https://www.chimechallenge.org/current/task1/index
https://www.chimechallenge.org/current/task1/index
https://www.chimechallenge.org/current/task1/index
https://www.chimechallenge.org/current/task1/index
https://www.chimechallenge.org/current/task1/index


Guided source separation
Effect of number of channels
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7 channels

2 channels

All declares that the false apostles were 
called or sent neither by men nor by man

All declares of the false apostles [were] 
recalled or sent neither by men [nor by man]

No GSS Paul declares that the false apostles were 
called or sent neither by men nor by man

REFERENCE:

LibriCSS example



Speaker attribution with SURT

102



Speaker attribution with SURT
Some other considerations

103

• How to train the two branches, i.e., joint vs. sequential? 

• Where to branch out of the ASR encoder?



Speaker attribution with SURT
Joint vs. sequential training
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Method ORC-WER WDER cpWER

Sequential 8.5 4.0 15.0

Joint 8.4 4.5 15.0

Sequential + joint 9.2 4.3 15.3

Experiments on simulated LibriSpeech mixtures



Speaker attribution with SURT
Where to branch out of the main encoder?
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Main Encoder Block WDER cpWER

Block 0 (after embedding layer) 5.4 16.7

Block 1 4.0 15.0

Block 2 6.7 19.6

Block 3 8.4 23.4

Experiments on simulated LibriSpeech mixtures



Problem Statement
Evaluation Metrics

Hello How are you doing?Hi, good afternoon.Reference:

Input:

Diarization:

ASR hypothesis: Hello Good afternoon. How are you cooking?

Diarization Error Rate (DER) Concatenated minimum permutation Word Error Rate (cpWER)
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Missed speech + False alarms + Speaker confusion

time (s)

Total speaking time

Hello How are you doing? Hi, good afternoon.

Hello How are you cooking? Good afternoon.

Concatenated reference:

Concatenated hypothesis:

Compute average WER for all permutations of speakers and return minimum


