Listening to Multi-talker Conversations Modular and End-to-end Perspectives

PhD Thesis Defense

Desh Raj January 26, 2024

Motivation

① OCTOBER 20, 2020

Al outperforms humans in speech recognition

by Monika Landgraf, Karlsruhe Institute of Technology

https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-other

Microsoft claims new speech recognition record, achieving a super-human 5.1% error rate

BY TODD BISHOP on August 20, 2017 at 7:44 pm

		≡
oring)		
ased Noisy Stud	ent Training wi	th Libri–Light
Jan '21	Jul '21	Jan '22
		_
1	1	

Motivation

Single-user applications

Smart Assistants

Customer Service

Language Learning

Voice-based Search

Multi-user applications

Meeting summaries

Collaborative Learning

Child language development

Motivation

Common ASR benchmarks

What changed?

- Conversational speech
- Far-field audio: noise and reverberation
- Overlapping speakers

k	AMI		CHIME-6	
al	Meeting Multi-speaker		Dinner party Multi-speaker	
			Mata Speaker	
		H		

4

Motivation The Cocktail Party Problem

Speaker Diarization

Raj et al. Probing the infomation encoded in x-vectors. **IEEE ASRU 2019**.

Raj et al. Multi-class spectral clustering with overlaps for speaker diarization. IEEE SLT 2021.

Raj et al. DOVER-Lap: A method for combining overlap-aware diarization outputs. **IEEE SLT 2021**.

Horiguchi et al. The Hitachi-JHU DIHARD III system. The Third DIHARD Challenge.

He et al. Target-speaker voice activity detection with improved i-vector estimation for unknown number of speaker. Interspeech 2021.

Raj and Khudanpur. Reformulating DOVER-Lap label mapping as a graph partitioning problem. Interspeech 2021.

Morrone et al. Low-Latency speech separation guided diarization for telephone conversations. **IEEE** SLT 2022.

Speaker Diarization

Raj et al. *Probing the infomation encoded in x-vectors*. **IEEE ASRU 2019**.

Raj et al. Multi-class spectral clustering with overlaps for speaker diarization. **IEEE SLT 2021**.

Raj et al. DOVER-Lap: A method for combining overlap-aware diarization outputs. **IEEE SLT 2021**.

Horiguchi et al. *The Hitachi-JHU DIHARD III system*. **The Third DIHARD Challenge**.

He et al. Target-speaker voice activity detection with improved i-vector estimation for unknown number of speaker. **Interspeech 2021**.

Raj and Khudanpur. *Reformulating DOVER-Lap label mapping as a graph partitioning problem*. Interspeech 2021.

Morrone et al. Low-Latency speech separation guided diarization for telephone conversations. **IEEE SLT 2022**.

Target-speaker Extraction/Recognition

Zmolikova et al. Auxiliary loss function for target speech extraction and recognition with weak supervision based on speaker characteristics. **Interspeech 2021**.

Huang et al. Adapting self-supervised models to multi-talker speech recognition using speaker embeddings. **IEEE ICASSP 2023**.

Raj et al. Anchored speech recognition using neural transducers. **IEEE ICASSP 2023**.

Raj et al. GPU-accelerated guided source separation for meeting transcription. **Interspeech 2023**.

Speaker embedding or enrollment audio

Target-speaker

Extraction

Speaker Diarization

Raj et al. Probing the infomation encoded in x-vectors. **IEEE ASRU 2019**.

Raj et al. Multi-class spectral clustering with overlaps for speaker diarization. IEEE SLT 2021.

Raj et al. DOVER-Lap: A method for combining overlap-aware diarization outputs. IEEE SLT 2021.

Horiguchi et al. The Hitachi-JHU DIHARD III system. The Third DIHARD Challenge.

He et al. Target-speaker voice activity detection with improved i-vector estimation for unknown number of speaker. Interspeech 2021.

Raj and Khudanpur. Reformulating DOVER-Lap label mapping as a graph partitioning problem. Interspeech 2021.

Morrone et al. Low-Latency speech separation guided diarization for telephone conversations. **IEEE** SLT 2022.

Target-speaker Extraction/Recognition

Zmolikova et al. Auxiliary loss function for target speech extraction and recognition with weak supervision based on speaker characteristics. Interspeech 2021.

Huang et al. Adapting self-supervised models to multi-talker speech recognition using speaker embeddings. IEEE ICASSP 2023.

Raj et al. Anchored speech recognition using neural transducers. IEEE ICASSP 2023.

Raj et al. GPU-accelerated guided source separation for meeting transcription. Interspeech 2023.

Wang et al. Sequential multi-frame neural beamforming for speech separation and enhancement. **IEEE SLT 2021**.

Speech Separation

Speaker Diarization

Target-speaker Extraction/Recognition

Multi-talker ASR

Arora et al. The JHU multi-microphone multi-speaker ASR system for the CHiME-6 challenge. **CHiME Workshop at IEEE ICASSP 2020**.

Raj et al. Integration of speech separation, diarization, and recognition for multi-speaker meetings: System description, comparison, and analysis. **IEEE SLT 2021**.

Huang et al. Joint speaker diarization and speech recognition based on region proposal networks. **Computer, Speech, and Language.**

Raj et al. Continuous streaming multi-talker ASR with dual-path transducers. **IEEE ICASSP 2022**.

Cornell et al. The CHiME-7 DASR challenge: Distant meeting transcription with multiple devices in diverse scenarios. **CHiME Workshop at Interspeech 2023**.

Raj et al. SURT 2.0: Advances in transducer-based multi-talker speech recognition. **IEEE Trans. Audio, Speech, and Lang. Proc.**

Raj et al. Speaker attribution in the SURT framework. Speaker Odyssey 2024 (submitted).

In this talk...

Speaker Diarization

Raj et al. Probing the infomation encoded in x-vectors. **IEEE ASRU 2019**.

Raj et al. Multi-class spectral clustering with overlaps for speaker diarization. IEEE SLT 2021.

Raj et al. DOVER-Lap: A method for combining overlap-aware diarization outputs. IEEE SLT 2021.

Horiguchi et al. *The Hitachi-JHU DIHARD III system*. The Third DIHARD Challenge.

He et al. Target-speaker voice activity detection with improved i-vector estimation for unknown number of speaker. Interspeech 2021.

Raj and Khudanpur. Reformulating DOVER-Lap label mapping as a graph partitioning problem. Interspeech 2021.

Morrone et al. Low-Latency speech separation guided diarization for telephone conversations. **IEEE** SLT 2022.

Target-speaker Extraction/Recognition

Zmolikova et al. Auxiliary loss function for target speech extraction and recognition with weak supervision based on speaker characteristics. Interspeech 2021.

Huang et al. Adapting self-supervised models to multi-talker speech recognition using speaker embeddings. IEEE ICASSP 2023.

Raj et al. Anchored speech recognition using neural transducers. IEEE ICASSP 2023.

Raj et al. GPU-accelerated guided source separation for meeting transcription. Interspeech 2023.

Wang et al. Sequential multi-frame neural beamforming for speech separation and enhancement. **IEEE SLT 2021**.

Speech Separation

Multi-talker ASR

Arora et al. The JHU multi-microphone multi-speaker ASR system for the CHiME-6 challenge. **CHiME** Workshop at IEEE ICASSP 2020.

Raj et al. Integration of speech separation, diarization, and recognition for multi-speaker meetings: System description, comparison, and analysis. **IEEE SLT** 2021.

Huang et al. Joint speaker diarization and speech recognition based on region proposal networks. **Computer, Speech, and Language.**

Raj et al. Continuous streaming multi-talker ASR with dual-path transducers. IEEE ICASSP 2022.

Cornell et al. The CHiME-7 DASR challenge: Distant meeting transcription with multiple devices in diverse scenarios. CHiME Workshop at Interspeech 2023.

Raj et al. SURT 2.0: Advances in transducer-based multi-talker speech recognition. IEEE Trans. Audio, Speech, and Lang. Proc.

Raj et al. Speaker attribution in the SURT framework. Speaker Odyssey 2024 (submitted).

Outline of the talk "Modular" and "end-to-end" perspectives

1. Problem statement

2. Modular system

- Probabilistic formulation (i)
- (ii) Meeting transcription pipeline

3. End-to-end system

- (i) Streaming Unmixing and Recognition Transducer (SURT)
- (ii) Speaker-attributed transcription with SURT
- 4. Conclusion

"Who spoke what?"

Problem Statement Multi-talker speaker-attributed ASR

multiple speakers.

Output:

- Transcription of the recording (speech recognition)
- Speaker attribution (diarization)
- Additional constraints: streaming, i.e., real-time transcription
- We specifically look at "meetings": LibriCSS, AMI, ICSI

• Input: long unsegmented (possibly multi-channel) recording containing

Problem Statement Corpora

Corpus Name	LibriCSS	AMI	ICSI
Session length	10 minutes	30-45 minutes	~60 minutes
Total size of corpus	10 hours	100 hours	70 hours
Microphones available	7-channel circular array	2 linear arrays with 8 channels each + headset	6 far-field + headset mics
Number of speakers	8	4	3-10
Overlap ratio	0 to 40%	~20%	~14%
Language	English	English	English
	Simulated (replayed)	Pool montings	Pool montings

Simulated (replayed)

Problem Statement Evaluation metrics

- Speech Recognition
- Speaker Diarization
- Multi-talker ASR
 - ORC-WER: WER for overlapping speech without speaker attribution
 - **cpWER**: WER for overlapping speech with speaker attribution

Word error rate (WER) = insertion + deletion + substitution (Levenshtein distance)

Diarization error rate (DER) = missed speech + false alarm + speaker confusion

Part I: Modular System

Probabilistic formulation Input and Output

Input: recording containing multiple speakers

Output: *speaker-attributed transcripts*

Good morning. How are you doing? Hello.

 Λ

Probabilistic formulation Instead, we model an intermediate solution

Probabilistic formulation Maximum *a posteriori*

$P(Y \mid R) = P\left(\Delta_1^N, u_1^N, \mathbf{y}_1^N \mid R\right)$ $= P\left(\Delta_1^N, u_1^N \mid R\right) P\left(\mathbf{y}_1^N \mid R, \Delta_1^N, u_1^N\right)$

$\hat{Y} = \arg \max P(Y \mid R)$

Probabilistic formulation Marginalizing over "target-speaker signals"

$$P\left(\mathbf{y}_{1}^{N} \mid R, \Delta_{1}^{N}, u_{1}^{N}\right) = \int_{\mathbf{X}_{1}^{N}} P\left(\mathbf{X}_{1}^{N}, \mathbf{y}_{1}^{N} \mid R, \Delta_{1}^{N}, u_{1}^{N}\right)$$

Target-speaker signal for segment n

Probabilistic formulation Marginalizing over "target-speaker signals"

$$P\left(\mathbf{y}_{1}^{N} \mid R, \Delta_{1}^{N}, u_{1}^{N}\right) = \int_{\mathbf{X}_{1}^{N}} P\left(\mathbf{X}_{1}^{N}, \mathbf{y}_{1}^{N} \mid R, \Delta_{1}^{N}, u_{1}^{N}\right)$$
$$= \int_{\mathbf{X}_{1}^{N}} P\left(\mathbf{X}_{1}^{N} \mid R, \Delta_{1}^{N}, u_{1}^{N}\right) P\left(\mathbf{X}_{1}^{N} \mid R, \Delta_{1}^{N} \mid R, \Delta_{1}^{N}, u_{1}^{N}\right) P\left(\mathbf{X}_{1}^{N} \mid R, \Delta_{1}^{N} \mid R, \Delta_{1}^{N}, u_{1}^{N}\right) P\left(\mathbf{X}_{1}^{N} \mid R, \Delta_{1}^{N} \mid R, \Delta_{1}^$$

$_{1}^{N} \mid \mathbf{R}, \Delta_{1}^{N}, u_{1}^{N} \rangle P\left(\mathbf{y}_{1}^{N} \mid \mathbf{R}, \Delta_{1}^{N}, u_{1}^{N}, \mathbf{X}_{1}^{N}\right)$

Probabilistic formulation Conditional independence assumptions

$$P\left(\mathbf{y}_{1}^{N} \mid R, \Delta_{1}^{N}, u_{1}^{N}\right) = \int_{\mathbf{X}_{1}^{N}} P\left(\mathbf{X}_{1}^{N}, \mathbf{y}_{1}^{N} \mid R, \Delta_{1}^{N}, u_{1}^{N}\right)$$
$$= \int_{\mathbf{X}_{1}^{N}} P\left(\mathbf{X}_{1}^{N} \mid R, \Delta_{1}^{N}, u_{1}^{N}\right) P\left(\mathbf{y}_{1}^{N} \mid R, \Delta_{1}^{N}, u_{1}^{N}, \mathbf{X}_{1}^{N}\right)$$
$$= \int_{\mathbf{X}_{1}^{N}} \prod_{j=1}^{N} P\left(\mathbf{X}_{j} \mid R, \Delta_{j}, u_{j}\right) \prod_{j=1}^{N} P\left(\mathbf{y}_{j} \mid \mathbf{X}_{j}\right)$$

Target-speaker signal for a segment isTranscript for a segment only depends onindependent of the signals for other segments.the target-speaker signal for that segment.

Probabilistic formulation Putting it all together

$$\hat{Y} = \arg \max_{\Delta_1^N, u_1^N, \mathbf{y}_1^N} \left[P\left(\Delta_1^N, u_1^N \mid R\right) \int_{\mathbf{X}_1^N} \prod_{j=1}^N P\left(\mathbf{X}_j \mid R, \Delta_j, u_j\right) \prod_{j=1}^N P\left(\mathbf{y}_j \mid \mathbf{X}_j\right) \right]$$

Computationally intractable!

Probabilistic formulationThe "modular" solution $\hat{Y} = \arg \max_{\Delta_1^N, u_1^N, \mathbf{y}_1^N} \left[P\left(\Delta_1^N, u_1^N \mid R\right) \int_{\mathbf{X}_1^N} \prod_{j=1}^N P\left(\mathbf{X}_j \mid R, \Delta_j, u_j\right) \prod_{j=1}^N P\left(\mathbf{y}_j \mid \mathbf{X}_j\right) \right]$

 $\hat{\Delta}_1^N, \hat{u}_1^N = \arg$

STEP 1:

speaker diarization

$$g\max_{\Delta_1^N,u_1^N} P\left(\Delta_1^N,u_1^N \mid R\right)$$

Probabilistic formulation $\hat{Y} = \arg \max_{\Delta_1^N, u_1^N, \mathbf{y}_1^N} \left| P\left(\Delta_1^N, u_1^N \mid R\right) \int_{\mathbf{X}_1^N} \prod_{j=1}^N P\left(\mathbf{X}_j \mid R, \Delta_j, u_j\right) \prod_{j=1}^N P\left(\mathbf{y}_j \mid \mathbf{X}_j\right) \right|$ The "modular" solution

STEP 2:

$$g\max_{\Delta_1^N,u_1^N} P\left(\Delta_1^N,u_1^N \mid R\right)$$

speaker diarization

$$= g(R, \hat{\Delta}_j, \hat{u}_j)$$

target speaker extraction

Probabilistic formula The "modular" solution

 $P\left(\mathbf{y}_{1}^{N} \mid R, \Delta_{1}^{N}, u_{1}^{N}\right)$

STEP 3:

STEP 2:

$$\hat{Y} = \arg \max_{\Delta_1^N, u_1^N, \mathbf{y}_1^N} \left[P\left(\Delta_1^N, u_1^N \mid R\right) \int_{\mathbf{X}_1^N} \prod_{j=1}^N P\left(\mathbf{X}_j \mid R, \Delta_j, u_j\right) \prod_{j=1}^N P\left(\mathbf{y}_j \mid \mathbf{X}_j\right) \right]$$

$$g\max_{\Delta_1^N,u_1^N} P\left(\Delta_1^N,u_1^N \mid R\right)$$

speaker diarization

$$= g(R, \hat{\Delta}_j, \hat{u}_j)$$

target speaker extraction

$$P_{\mathbf{x}}^{N} \approx \prod_{j=1}^{N} P\left(\mathbf{y}_{j} \mid \hat{\mathbf{X}}_{j}\right)$$

speech recognition

Meeting transcription pipeline Based on the modular approach

Diarization should correctly identify all speakers (including overlaps).

TSE module should be efficient for extracting signals for all segments.

Meeting transcription pipeline Contribution #1: Overlap-aware spectral clustering

- Clustering-based diarization usually assumed singlespeaker segments, which leads to high *missed speech*.
- We propose a new overlap-aware diarization method, based on a graphical formulation of spectral clustering.
- This new method can incorporate an *external overlap detector*.

Meeting transcription pipeline Contribution #1: Overlap-aware spectral clustering

Speaker conf.

10.5 2.2 11.3

12% relative DER improvement on

AMI over spectral clustering baseline.

OASC

Meeting transcription pipeline Contribution #1: Overlap-aware spectral clustering

Does not require **matching training** data or initialization with other diarization systems.

Meeting transcription pipeline Contribution #2: GPU-accelerated Guided Source Separation

- GSS is a signal processing method for targetspeaker extraction.
- Contains several iterative parts, e.g., mask estimation using complex angular GMMs.
- Implemented **300x faster** GPU-accelerated GSS using smart batching and caching strategies.
- Processing time for CHiME-6 dev set reduced from 19.3h (using 80 CPUs) to 1.3h (using 4 GPUs)

Meeting transcription pipeline Results on LibriCSS

10 minute sessions, 0-40% overlapping speech, mixed LibriSpeech utterances

Diarization	TSE	DER (%)	cpWER (%)
Spectral clustering	None	14.9	18.3

Meeting transcription pipeline Results on LibriCSS

10 minute sessions, 0-40% overlapping speech, mixed LibriSpeech utterances

Diarization	TSE	DER (%)	cpWER (%)
Spectral clustering	None	14.9	18.3
Overlap- aware SC	None	11.3 24.2%	17.1 4 6.6%

Meeting transcription pipeline Results on LibriCSS

10 minute sessions, 0-40% overlapping speech, mixed LibriSpeech utterances

Diarization	TSE	DER (%)	cpWER (%)
Spectral clustering	None	14.9	18.3
Overlap- aware SC	None	11.3 J 24.2%	17.1
	GSS		12.1 J 33.9%

Meeting transcription pipeline Results on AMI

30 minute sessions, ~20% overlapping speech, real 4-person meetings

Diarization	TSE	DER (%)	cpWER (%)
Spectral clustering	None	25.5	38.5
Overlap- aware SC	None	23.7	38.5
	GSS		31.0
AMI ES2011a (from 817s to 833s)

Speakers

Reference I ALSO THINK THOUGH THAT IT SHOULDN'T HAVE TOO MAN BUTTONS 'CAUSE I HATE THAT WHEN THEY HAVE TOO MAN BUTTONS AND I MEAN I KNOW IT HAS TO HAVE ENOUGH FUNCTIONS BUT LIKE I DON'T KNOW YOU JUST HAVE LIK EIGHT THOUSAND BUTTONS AND YOU'RE LIKE NO YOU NEVE USE HALF OF THEM | SO YEAH I AGREE | B BUTTON AND THE F BUTTON THEY DON' DO ANYTHING

YEAH YEAH YEAH

IANY ANY IH IKE VER	
)N ' T	

AMI ES2011a (from 817s to 833s)

Speakers

Reference I ALSO THINK THOUGH THAT IT SHOULDN'T HAVE TOO MAN BUTTONS 'CAUSE I HATE THAT WHEN THEY HAVE TOO MAN BUTTONS AND I MEAN I KNOW IT HAS TO HAVE ENOUGH FUNCTIONS BUT LIKE I DON'T KNOW YOU JUST HAVE LIK EIGHT THOUSAND BUTTONS AND YOU'RE LIKE NO YOU NEVE USE HALF OF THEM | SO YEAH I AGREE | B BUTTON AND THE F BUTTON THEY DON' DO ANYTHING

YEAH YEAH YEAH

cpWER = 40.5%

	Spectral clustering + No GSS
ANY NY H KE VER	I ALSO THINK THOUGH THAT IT SHOULDN'T HAVE TOO MANY BUTTONS 'CAUSE I HATE THAT ONLY HAVE TOO MANY BUTTONS AND I MEAN I KNOW IT HAS TO HAVE MANY FUNCTIONS BUT LIKE I DUNNO JUST HAVE LIKE EIGHT THOUSAND BUTTONS AND YOU'RE LIKE NO YOU NEVER USE HALF OF THEM
N ' T	

AMI ES2011a (from 817s to 833s)

Speakers

Reference I ALSO THINK THOUGH THAT IT SHOULDN'T HAVE TOO MAN BUTTONS 'CAUSE I HATE THAT WHEN THEY HAVE TOO MAN BUTTONS AND I MEAN I KNOW IT HAS TO HAVE ENOUGH FUNCTIONS BUT LIKE I DON'T KNOW YOU JUST HAVE LIK EIGHT THOUSAND BUTTONS AND YOU'RE LIKE NO YOU NEVE USE HALF OF THEM | SO YEAH I AGREE | B BUTTON AND THE F BUTTON THEY DON' DO ANYTHING

YEAH YEAH YEAH

cpWER = 72.2%

	Overlap-aware Spectral clustering + No GSS
ANY ANY H [KE VER	I ALSO THINK THAT IT SHOULDN'T HAVE TOO MANY BUTTONS 'CAUSE I HATED NOT ONLY HAVE TOO MANY BUTTONS AND THINGS BUT I MEAN I KNOW IT HAS TO HAVE NO MANY FUNCTIONS BUT LIKE I DUNNO JUST HAVE LIKE EIGHT THOUSAND BUTTONS AND YOU'RE LIKE YOU KNOW YOU NEVER USE HALF THE TIME
N ' T	IT SHOULDN'T HAVE TOO MANY BUTTONS 'CAUSE I HATE THAT ONLY HAVE TOO MANY BUTTONS AND THINGS BUT I MEAN I KNOW IT HAS TO HAVE NO MANY FUNCTIONS BUT

AMI ES2011a (from 817s to 833s)

Speakers

Reference I ALSO THINK THOUGH THAT IT SHOULDN'T HAVE TOO MAN BUTTONS 'CAUSE I HATE THAT WHEN THEY HAVE TOO MAN BUTTONS AND I MEAN I KNOW IT HAS TO HAVE ENOUGH FUNCTIONS BUT LIKE I DON'T KNOW YOU JUST HAVE LIK EIGHT THOUSAND BUTTONS AND YOU'RE LIKE NO YOU NEVE USE HALF OF THEM | SO YEAH I AGREE | B BUTTON AND THE F BUTTON THEY DON' DO ANYTHING

YEAH YEAH YEAH

cpWER = 29.1%

	Overlap-aware Spectral clustering + GSS
ANY ANY H [KE VER	I ALSO THINK THOUGH THAT IT SHOULDN'T HAVE TOO MANY BUTTONS 'CAUSE I HAD THAT ONLY HAVE TOO MANY BUTTONS AND I MEAN I KNOW IT HAS TO HAVE ENOUGH FUNCTIONS BUT LIKE I DUNNO JUST HAVE LIKE EIGHT THOUSAND BUTTONS AND YOU'RE LIKE NO YOU NEVER USE HALF OF THEM
N ' T	S YEAH I AGREE M THE BUTTON ON F BUTTON THEY DON'T DO ANYTHING

Modular system Limitations

- Modules are independently optimized for different objectives
- Higher accumulated latency
- Error propagation through modules
- Requires more engineering efforts to maintain

• Cannot be used for streaming or single-channel inputs

Part II: End-to-end System

Preliminary Neural transducers for ASR

- **Encoder** converts input *audio* to highdimensional representation
- **Predictor** is an autoregressive model that encodes input *text*
- Joiner combines audio and text representations to predict next token

$$P(\mathbf{y} \mid \mathbf{X}) = \sum_{\mathbf{a} \in \mathscr{B}^{-1}(\mathbf{y})} P(\mathbf{a} \mid \mathbf{X}) = \sum_{\mathbf{a} \in \mathscr{B}^{-1}(\mathbf{y})} \prod_{t=1}^{T} P(a_t \mid \mathbf{X}, \mathbf{a}_{1:t-1})$$

Continuous, streaming, multi-talker ASR Using neural transducers

- **Continuous:** does not rely on external segmentation
- simultaneously

• Assume we have K speakers in the input audio

• Streaming: does not use right context; overlapping speech is transcribed

Continuous, streaming, multi-talker ASR Option 1: Single output stream per speaker

Assume each speaker's transcript is given the audio

 $P(\mathbf{Y} \mid \mathbf{X}) = P(\tilde{\mathbf{y}}_1, .$

Assume each speaker's transcript is conditionally independent of others

...,
$$\tilde{\mathbf{y}}_{K} \mid \mathbf{X}$$
) $\approx \prod_{k=1}^{K} P(\tilde{\mathbf{y}}_{k} \mid \mathbf{X})$

Continuous, streaming, multi-talker ASR **Option 1: Single output stream per speaker**

Limitations:

- 1. Number of output **channels** is *K*, i.e., model depends on input
- speaker permutation problem at the output

Need to find a solution with fixed number of output channels

2. Requires $\mathcal{O}(K^2)$ number of transducer loss computations to solve

Continuous, streaming, multi-talker ASR Option 2: Graph coloring approach

- Graph with each utterance as a node
- If two utterances overlap, connect them with an edge

- overlaps.
- Overlaps of 3 or more speakers are extremely rare, so we can assume 2 output channels henceforth.

• If the graph is colorable with C colors, then the utterances can be mapped to C channels without

Continuous, streaming, multi-talker ASR Permutation invariant training (PIT)

$$P(\mathbf{y}_1, \dots, \mathbf{y}_N \mid \mathbf{X}) = \max_{\zeta} P(\mathbf{Y}_1, \mathbf{Y}_2 \mid \mathbf{X})$$
$$\approx \max_{\zeta} P(\mathbf{Y}_1 \mid \mathbf{X}) P(\mathbf{Y}_2 \mid \mathbf{X}),$$
$$\zeta$$

- ζ : all possible assignment of $\mathbf{y}_1, \ldots, \mathbf{y}_N$ on to two output channels

 $\mathscr{L}_{\text{pit}}(\mathbf{y}_{1:N}, \mathbf{X}; \Theta) = \min_{\zeta} \left[-\log P_{\Theta}(\mathbf{Y}_1 \mid \mathbf{X}) - \log P_{\Theta}(\mathbf{Y}_2 \mid \mathbf{X}) \right]$

• Number of assignments is **exponential** in the number of utterance groups!

Continuous, streaming, multi-talker ASR Heuristic error assignment training (HEAT)

Assign utterances to first available channel in order of start time

$P(\mathbf{y}_1, \dots, \mathbf{y}_N \mid \mathbf{X}) = P(\mathbf{Y}_1 \mid \mathbf{X})P(\mathbf{Y}_2 \mid \mathbf{X})$

 $\mathscr{L}_{\text{heat}}(\mathbf{y}_{1:N}, \mathbf{X}; \Theta) = -\log P_{\Theta}(\mathbf{Y}_1 \mid \mathbf{X}) - \log P_{\Theta}(\mathbf{Y}_2 \mid \mathbf{X})$

Streaming Unmixing and Recognition Transducer (SURT) Model

Streaming Unmixing and Recognition Transducer (SURT) Some challenges

- 1. How to train the model efficiently?
- 2. What kind of errors can happen with such models?
- 3. Can the model work well on real meetings?

Making training efficient **#1: Shorter training mixtures**

- Create synthetic mixtures from sub-segments instead of full-utterances
- regions

Multiple turns of conversation more important than long single-speaker

Making training efficient **#2: Zipformer encoder**

- 1. Subsampling in intermediate layers
- 2. Shared self-attention weights in each zipformer "block"
- 3. Other things (e.g., ScaledAdam)

Yao, Zengwei et al. "Zipformer: A faster and better encoder for automatic speech recognition." ICLR, 2024.

Making training efficient **#3: Pruned transducer loss**

- Original transducer loss computes sum over all possible alignments
- Instead, pruned loss sums over a subset of alignments:

$$P(\mathbf{y} \mid \mathbf{X}) = \sum_{\mathbf{a} \in \mathscr{B}_{\text{pruned}}^{-1}(\mathbf{y})} P(\mathbf{a} \mid \mathbf{X})$$

Kuang, F., Guo, L., Kang, W., Lin, L., Luo, M., Yao, Z., & Povey, D. Pruned RNN-T for fast, memory-efficient ASR training. Interspeech 2022.

Making training efficient #4: Single-speaker pre-training

Leakage and omission errors #1: Architectural changes

- Masking network: use dual-path LSTM, which is better for separation
- 2. Encoder: use "branch tying"
- 3. Decoder: use "stateless" prediction network

Leakage and omission errors #2: Masking loss and encoder CTC loss

We use 2 auxiliary loss functions:

1. CTC loss at the output of the encoder (for better alignment)

2. **MSE loss** on the masked filterbanks (for better separation)

 $\mathcal{L} = \mathcal{L}'_{\rm rnnt} + \lambda_{\rm ctc} \mathcal{L}_{\rm ctc} + \lambda_{\rm mask} \mathcal{L}_{\rm mask}$

Performance on real meetings #1: Simulation using real meeting statistics

Performance on real meetings #2: Domain adaptation

Results on LibriCSS #1: SURT outperforms larger multi-turn RNN-T model

Sklyar, Ilya et al. "Multi-Turn RNN-T for Streaming Recognition of Multi-Party Speech." IEEE ICASSP 2022: 8402-8406.

Results on LibriCSS #2: Effect of architectural changes

Most improvement comes from using DP-LSTM in masking network.

63

Results on LibriCSS #3: Effect of auxiliary objectives

	WER
No aux. loss	18.
+ CTC loss	17.
+ Mask loss	17.
+ CTC + Mask	15.

Results on LibriCSS #4: Single speaker pre-training is critical

Epoch

Results on real meetings **AMI and ICSI**

IHM-Mix = close talk, SDM = far-field (single-channel)

AMI

	IHM-Mix	SDM	MDM (beamforr
SURT	36.8	62.5	44.4
+ adapt.	35.1	44.6	41.4

ICSI

	IHM-Mix	SDM
SURT	27.8	59.7
+ adapt.	24.4	32.2

Speaker attribution with SURT How to predict speaker labels with ASR tokens?

Speaker attribution with SURT Heuristic error assignment training for speakers

- tokens
- How to do both tasks jointly?

• Use the same 2-branch strategy, but predict speaker labels instead of ASR

Speaker attribution with SURT Auxiliary speaker encoder

Speaker attribution with SURT Synchronizing speaker labels with ASR tokens

- At inference time, it is not necessary that both output streams emit same number of tokens.
- Even if they do, they may not be frame synchronous.

\mathbf{Y}_1	<blk></blk>	_GOOD _	MORNING	<blk></blk>	_HE	<blk></blk>	LL	
\mathbf{S}_1	<blk></blk>	1	<blk></blk>	1	<blk></blk>	3	<blk></blk>	

Speaker attribution with SURT Hybrid autoregressive transducer (HAT)

RNN-Transducer

 $P(\mathbf{a}_t \mid \mathbf{f}_1^t, \mathbf{g}_1^{u(t)-1}) = \text{Softmax}(\mathbf{z}_{t,u})$

- Multinomial distribution over blank and non-blank tokens
- Cannot model blank probability separately

HAT

$$P(\mathbf{a}_{t} \mid \mathbf{f}_{1}^{t}, \mathbf{g}_{1}^{u(t)-1}) = \begin{cases} b_{t,u}, & \text{if } \mathbf{a}_{t} = \phi, \\ (1 - b_{t,u}) \text{ Softmax}(\mathbf{z}_{t,u}[1:]), & \text{otherwise} \end{cases}$$

- Bernoulli distribution for blank; multinomial over non-blank tokens
- Probability of blank given directly by $b_{t,u}$

Variani, Ehsan et al. "Hybrid Autoregressive Transducer (HAT)." IEEE ICASSP 2020.

Speaker attribution with SURT Synchronization by sharing <blk>

- If ASR branch emits <blk> do the same for speaker branch
- This is achieved by using HAT-style blank factorization, and sharing blank logit between ASR and speaker branch

Speaker attribution with SURT **Results on AMI (evaluation on utterance groups)**

Utterance group = set of utterances connected by overlaps or short pauses

			Streaming	Offline
Mic Setting	ORC-WER	WDER	cpWER	Modular System cpWER
IHM-Mix	34.9	9.3	42.3	
SDM	43.2	10.9	50.3	38.5
MDM (beamformed)	40.5	9.9	47.3	31.0

Speaker attribution with SURT From utterance groups to full sessions

 How to maintain relative speaker labels when processing different utterance groups within the same session?

Speaker attribution with SURT Speaker prefixing approach

- Extract high-confidence frames of predicted speakers and prefix them in front of current input.
- Remove prefixed part from encoder representation.

Speaker attribution with SURT Evaluation on AMI IHM-Mix setting

"Enrollment" = using small chunk from speaker's enrollment speech for prefixing

Evaluation	Method	cpWER
Utterance group	SURT w/o speaker prefix	42.3
Full session	SURT w/o speaker prefix	100.1
	SURT w/ speaker prefix (128 frames = 1.28s per speaker)	82.8
	+ enrollment	53.8

Conclusions and Future Work

Conclusions

- multi-talker ASR problem.
- Provides **flexibility** of components, but **errors propagate**.
- resulting in the **SURT** model.
- tokens and speaker labels with the model.
- Single model to perform speaker-attributed transcription!

• Modular system is an **approximate solution** for the probabilistic formulation of

For end-to-end modeling, we extended neural transducers for multi-talker ASR,

• We demonstrated how to train SURT efficiently, and how to **jointly predict** ASR

Future Work

Improving the accuracy

- MODELING Full session evaluation has high error rates \rightarrow speaker tracking with latent embeddings?
- Using larger models \rightarrow teacher-student training for the encoder? TRAINING
- Search errors in ASR/speaker modeling \rightarrow speaker-guided beam search? DECODING
- Rescoring the whole conversation \rightarrow possible application of LLMs? DECODING

Improving the efficiency

- Two branch strategy is wasteful \rightarrow multi-blank modeling? MODELING
- Deeper integration of ASR and speaker encoders \rightarrow revisit joint training? TRAINING

Thanks!

Extra Slides

Overlap-aware Spectral Clustering

Clustering-based diarization Overview of the process

Clustering paradigm assumes single-speaker segments

So overlapping speakers are completely ignored!

"Roughly **8% of the absolute error** in our systems was from overlapping speech ... it will likely require a **complete rethinking of the diarization process** ... This is an important direction, but could not be addressed ..." **- JHU team (2018)**

"Given the current performance of the systems, the **overlapped speech gains more relevance** ... **more than 50% of the DER** in our best systems ... has to be addressed in the future ..." - BUT team (2019)

Overlap-aware spectral clustering

Cosine similarity

Edge weights within a group

Edge weights across groups

maximize

maximize

subject to

Edge weights within a group

Edge weights across groups

$$\epsilon(X) = \frac{1}{K} \sum_{k=1}^{K} \frac{X_k^T A X_k}{X_k^T D X_k}$$
$$X \in \{0, 1\}^{N \times K},$$
$$X \mathbf{1}_K = \mathbf{1}_N.$$

K speakers, N segments

New formulation for spectral clustering **This problem is NP-hard!**

Remove the discrete constraints to make the problem solvable

New formulation for spectral clustering **Relaxed problem has a set of solutions**

Taking the Eigen-decomposition of D⁻¹A

and its orthonormal transforms

Set of solutions to the relaxed problem

New formulation for spectral clustering Now we need to **discretize** this solution!

Find a matrix which is **discrete** and also close to any one of the **orthonormal transformations** of the relaxed solution

New formulation for spectral clustering Now we need to **discretize** this solution!

and its orthonormal transforms

Iterate until convergence

Suppose we have v_{OL}

Discrete constraint is modified to include overlap detector output

Let us now make it overlap-aware Modify non-maximal suppression to pick top 2 speakers

transforms

Iterate until convergence

GPU-accelerated GSS

Guided source separation Consists of 3 main steps

https://github.com/fgnt/pb_chime5

Boeddeker, Christoph et al. "Front-end processing for the CHiME-5 dinner party scenario." *CHiME Workshop, 2018* .

Guided source separation Limitations with original implementation

- Several iterative parts, e.g., mask estimation using complex angular GMMs. All implementation on CPU (with NumPy).
- Example: Applying GSS on CHiME-6 dev set takes ~20h with 80 jobs!

Guided source separation **Speed-up**

- Comparison on CHiME-6 dev set
- Old GSS: Takes **19.3** hours using 80 jobs
- New GSS: Takes **1.3** hours using 4 GPUs

CHiME-7 DASR Baseline

 Part of the official baseline in CHiME-7 DASR challenge: <u>https://</u> <u>www.chimechallenge.org/current/task1/index</u>

Guided source separation **Effect of number of channels**

LibriCSS example

Speaker attribution with SURT

Speaker attribution with SURT Some other considerations

- How to train the two branches, i.e., joint vs. sequential?
- Where to branch out of the ASR encoder?

Speaker attribution with SURT Joint vs. sequential training

Experiments on simulated LibriSpeech mixtures

ORC-WER	WDER	cpWER
8.5	4.0	15.0
8.4	4.5	15.0
9.2	4.3	15.3

Speaker attribution with SURT Where to branch out of the main encoder?

Experiments on simulated LibriSpeech mixtures

	WDER	cpWER
er)	5.4	16.7
	4.0	15.0
	6.7	19.6
	8.4	23.4

Problem Statement Evaluation Metrics

Concatenated minimum permutation Word Error Rate (cpWER)

nated reference:	Hello How are you doing?	Hi, good afternoon.
nated hypothesis:	Hello How are you cooking?	Good afternoon.

Compute average WER for all permutations of speakers and return minimum

