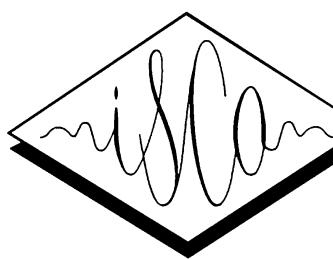
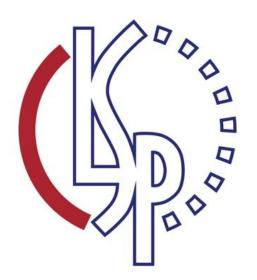
On Speaker Attribution with SURT

Desh Raj, Matthew Wiesner, Matthew Maciejewski, Paola Garcia, Daniel Povey, Sanjeev Khudanpur

Desh Raj



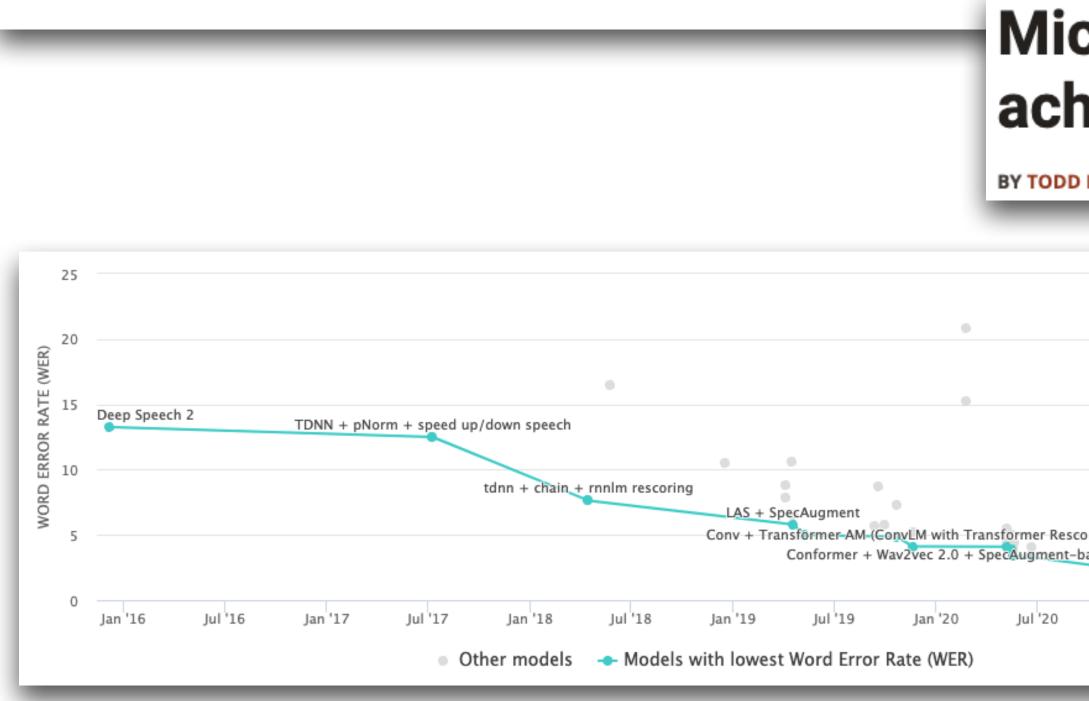


Motivation

① OCTOBER 20, 2020

Al outperforms humans in speech recognition

by Monika Landgraf, Karlsruhe Institute of Technology



https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-other

Microsoft claims new speech recognition record, achieving a super-human 5.1% error rate

BY TODD BISHOP on August 20, 2017 at 7:44 pm

		≡
oring)		
ased Noisy Stud	ent Training wi	th Libri–Light
Jan '21	Jul '21	Jan '22
		_
1 1	1	

Motivation

Single-user applications

Smart Assistants

Customer Service

Language Learning

Voice-based Search

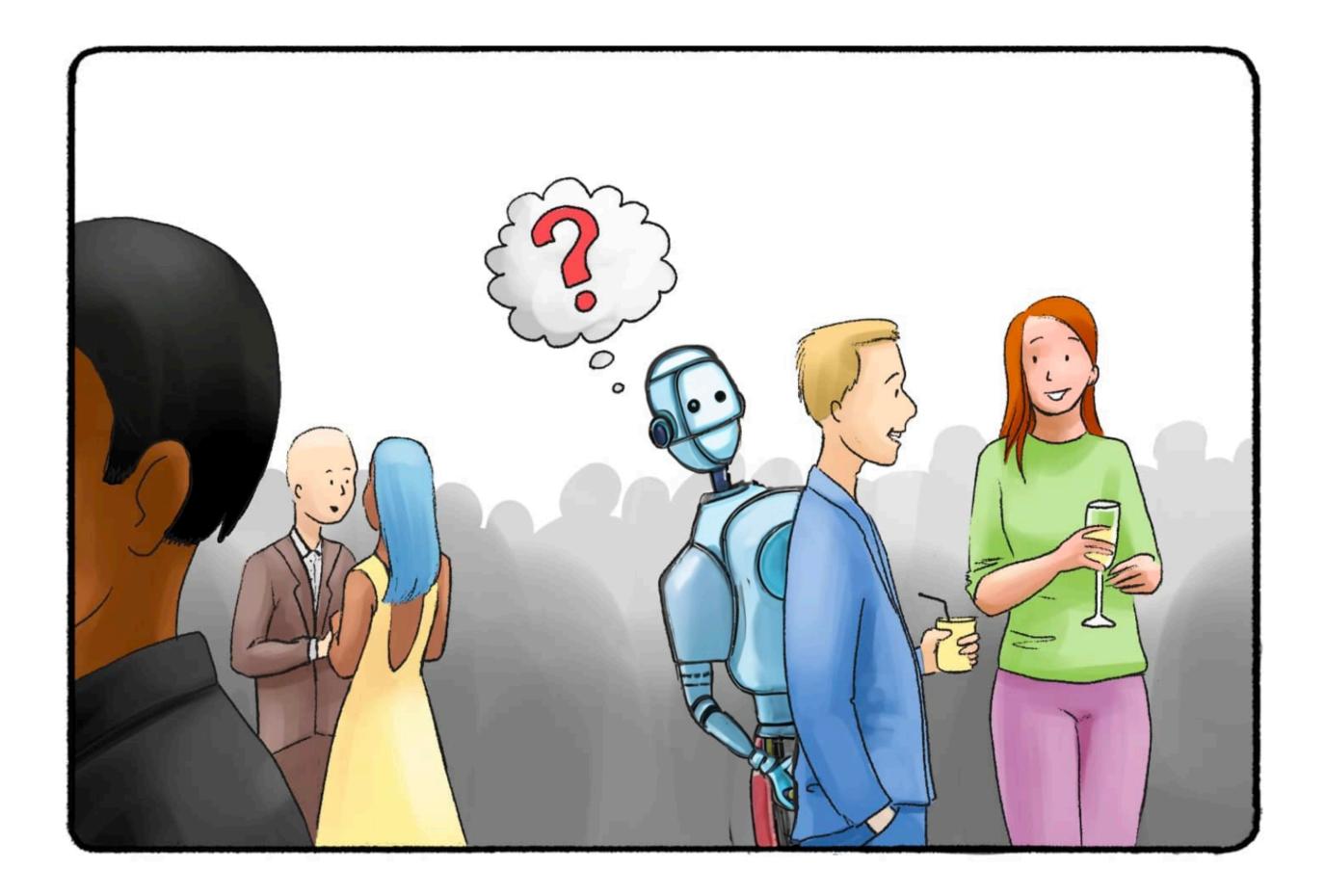
Multi-user applications

Meeting summaries

Collaborative Learning

Child language development

Motivation The Cocktail Party Problem



Outline of the talk

- 1. Problem statement: "who spoke what?"
- 2. Modular system and its Limitations
- 3. Streaming Unmixing and Recognition Transducer (SURT)
- 4. Speaker-attributed transcription with SURT
- 5. Conclusion

Problem Statement Multi-talker speaker-attributed ASR

multiple speakers.

Output:

- Transcription of the recording (speech recognition)
- Speaker attribution (diarization)
- Additional constraints: streaming, i.e., real-time transcription
- We specifically look at "meetings": AMI, ICSI

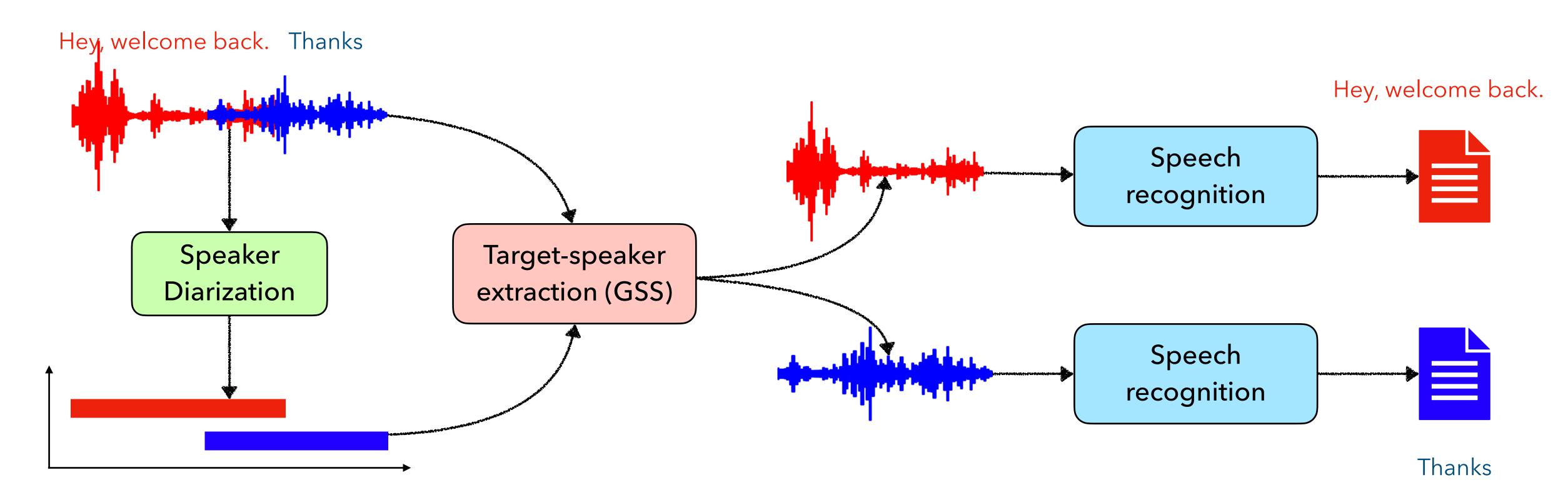
• Input: long unsegmented (possibly multi-channel) recording containing

Problem Statement Evaluation metrics

- Speech Recognition
 - Word error rate (WER) = insertion + deletion + substitution (Levenshtein distance)
- Speaker Diarization
 - Diarization error rate (DER) = missed speech + false alarm + speaker confusion
 - speaker
- Multi-talker ASR
 - ORC-WER: WER for overlapping speech without speaker attribution
 - cpWER: WER for overlapping speech with speaker attribution

Word diarization error rate (WDER) = % of correctly recognized words attributed to the wrong

Modular system **Pipeline from the CHiME challenge**



Shinji Watanabe, et al. CHiME-6 Challenge: Tackling Multi-speaker Speech Recognition for Unsegmented Recordings. CHiME Workshop, 2020.

Desh Raj, et al. GPU-accelerated Guided Source Separation for Meeting Transcription. Interspeech, 2023.

Modular system Limitations

- Modules are independently optimized for different objectives
- Higher accumulated **latency**
- Error propagation through modules
- Requires more engineering efforts to maintain

• Cannot be used for streaming or single-channel inputs

Continuous, streaming, multi-talker ASR Definitions

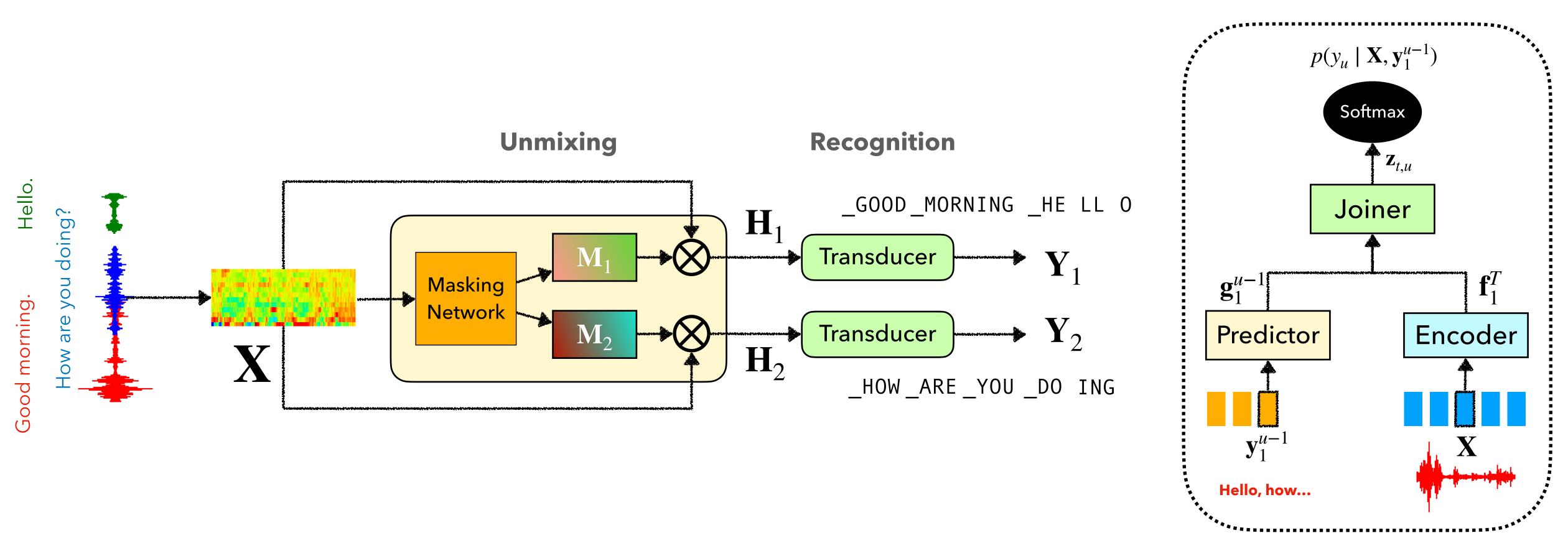
- **Continuous:** does not rely on external segmentation
- simultaneously

Desh Raj, et al. Continuous Streaming Multi-Talker ASR with Dual-Path Transducers. IEEE ICASSP, 2022.

Desh Raj, et al. SURT 2.0: Advances in Transducer-Based Multi-Talker Speech Recognition. IEEE/ACM TASLP, vol. 31, 2023.

• Streaming: does not use right context; overlapping speech is transcribed

Streaming Unmixing and Recognition Transducer (SURT)



• To solve the **permutation problem**, assign utterances to first available channel in order of start time

 $\mathscr{L}_{\text{heat}}(\mathbf{y}_{1:N}, \mathbf{X}; \Theta) = -\log P_{\Theta}(\mathbf{Y}_1 \mid \mathbf{X}) - \log P_{\Theta}(\mathbf{Y}_2 \mid \mathbf{X})$

Streaming Unmixing and Recognition Transducer (SURT) Results on real meetings (AMI and ICSI)

AMI		ICSI	
Close-talk WER (%)	35.1	Close-talk WER (%) 24.4	
Far-field WER (%)	44.6	Far-field WER (%) 32.2	

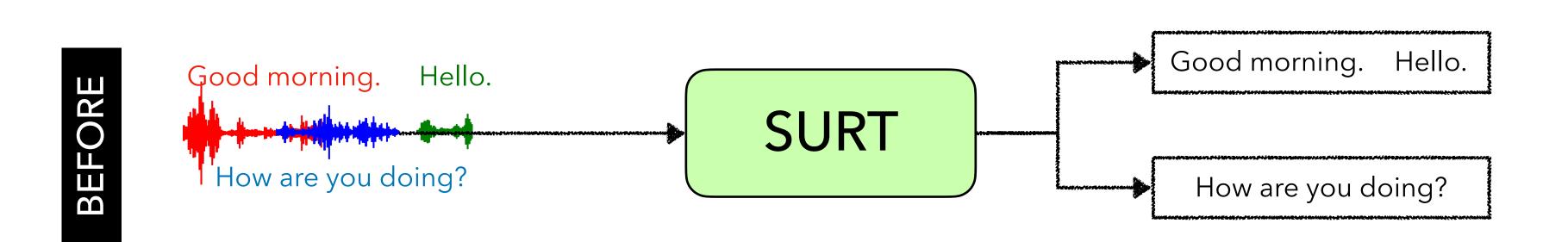
Overlap ratio = 21.6%

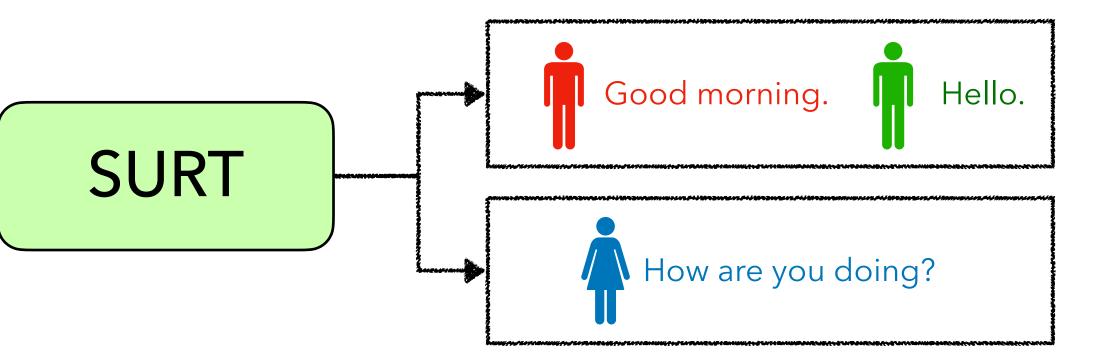
- Results in terms of ORC-WER (speaker-agnostic).

Overlap ratio = 11.1%

• As a comparison, a single-speaker model for AMI gets ~18% (close-talk) and 32% (far-field).

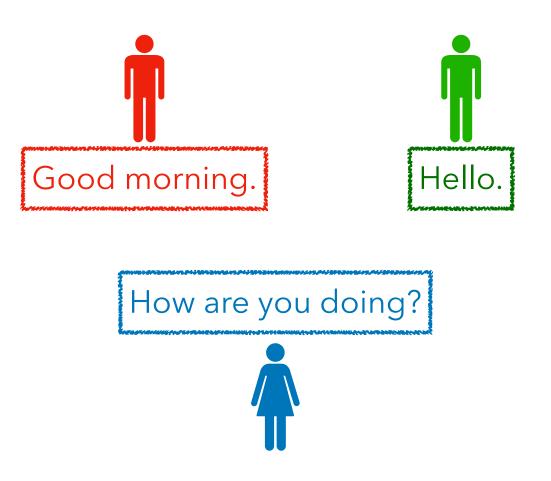
Speaker attribution with SURT How to predict speaker labels with ASR tokens?



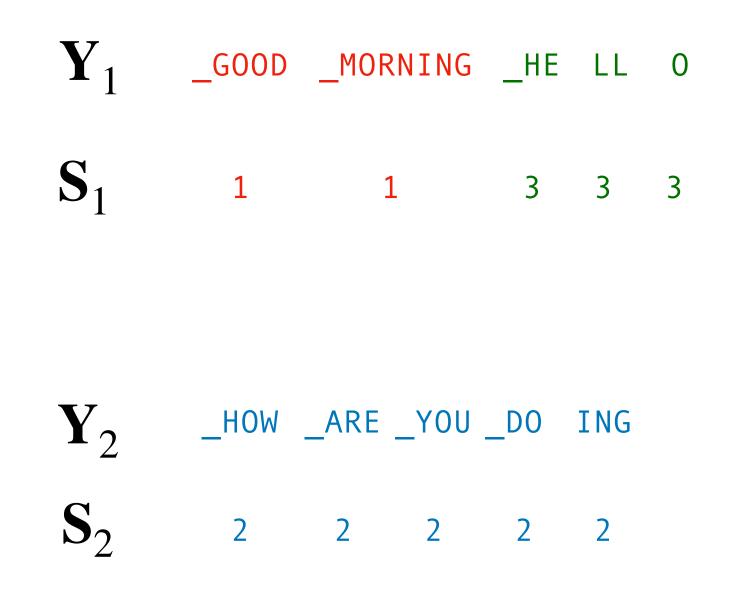


Speaker attribution with SURT Heuristic error assignment training for speakers

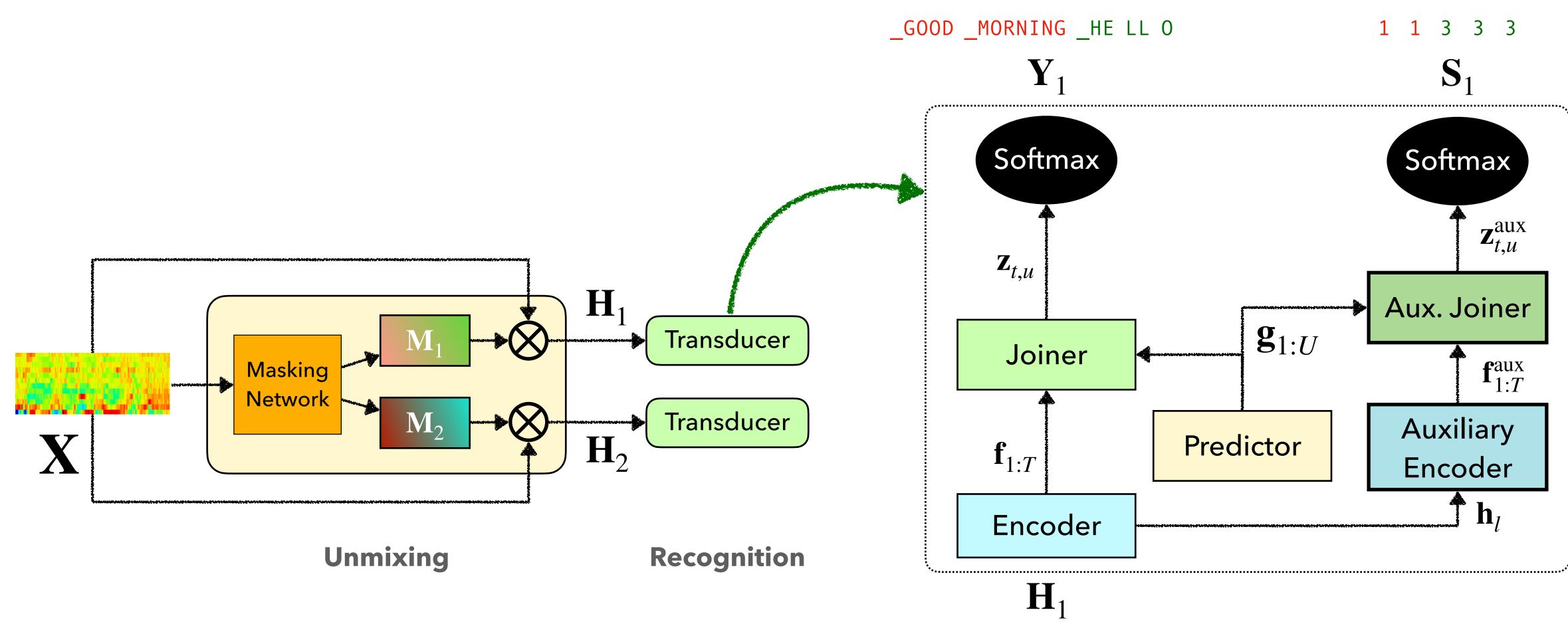
- Speakers are ordered in their relative order of appearance
- How to do both tasks jointly?



• Use the same 2-branch strategy, but predict speaker labels instead of ASR tokens



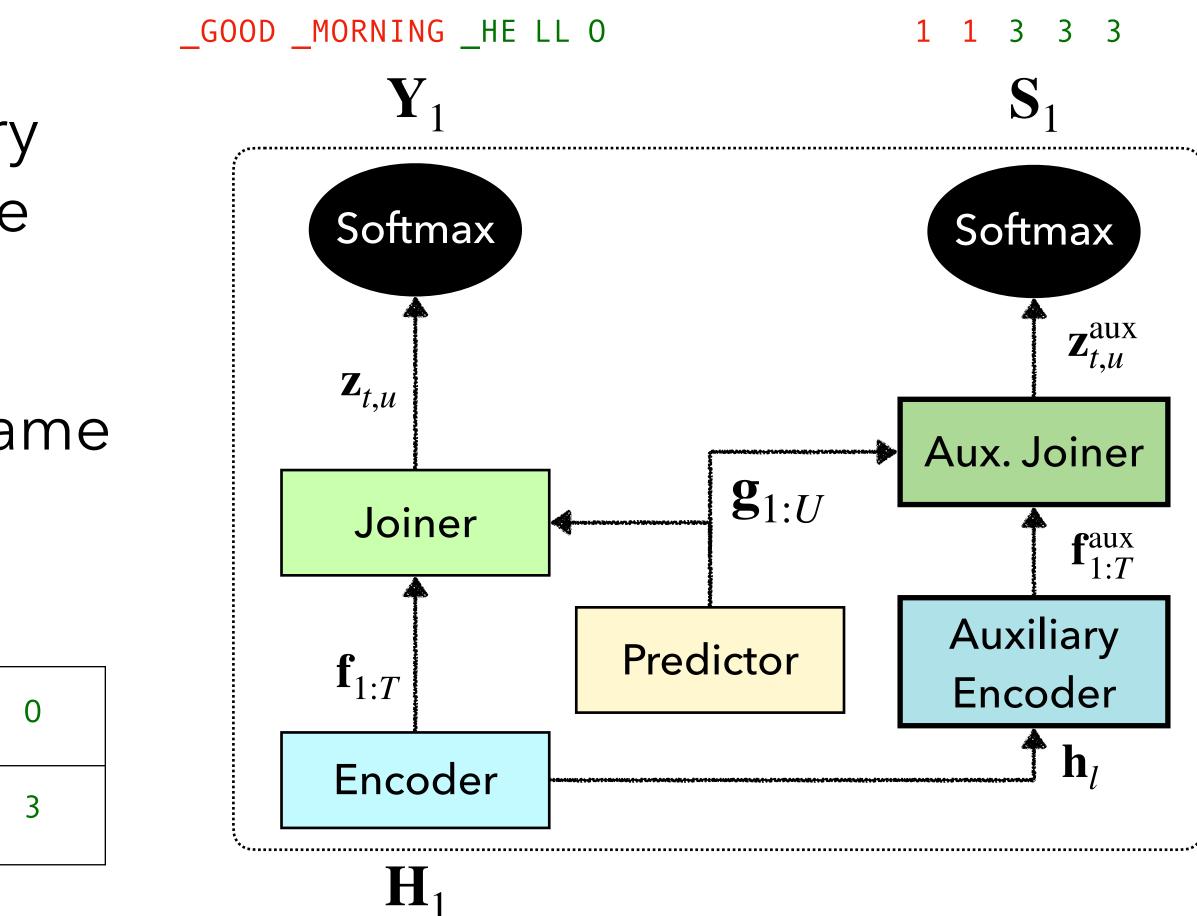
Speaker attribution with SURT Auxiliary speaker encoder



Speaker attribution with SURT Synchronizing speaker labels with ASR tokens

- At inference time, it is not necessary that both output streams emit same number of tokens.
- Even if they do, they may not be frame synchronous.

\mathbf{Y}_1	<blk></blk>	_GOOD _	_MORNING	<blk></blk>	_HE	<blk></blk>	LL	
\mathbf{S}_1	<blk></blk>	1	<blk></blk>	1	<blk></blk>	3	<blk></blk>	



Speaker attribution with SURT Hybrid autoregressive transducer (HAT)

RNN-Transducer

 $P(\mathbf{a}_t \mid \mathbf{f}_1^t, \mathbf{g}_1^{u(t)-1}) = \text{Softmax}(\mathbf{z}_{t,u})$

- Multinomial distribution over blank and non-blank tokens
- Cannot model blank probability separately

HAT

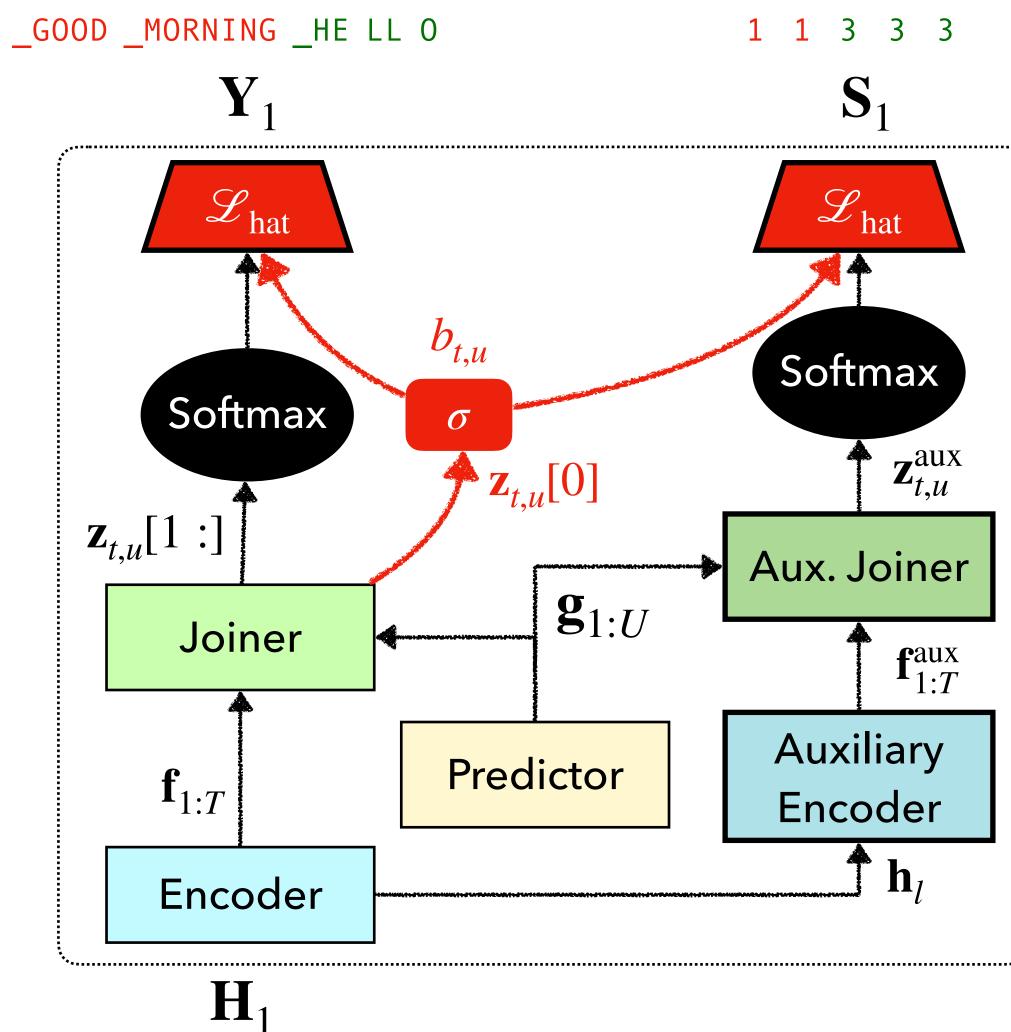
$$P(\mathbf{a}_{t} \mid \mathbf{f}_{1}^{t}, \mathbf{g}_{1}^{u(t)-1}) = \begin{cases} b_{t,u}, \text{ if } \mathbf{a}_{t} = \phi, & b_{t,u} = \sigma(\mathbf{z}_{t,u}[0]) \\ (1 - b_{t,u}) \text{ Softmax}(\mathbf{z}_{t,u}[1:]), \text{ otherwise} \end{cases}$$

- Bernoulli distribution for blank; multinomial over non-blank tokens
- Probability of blank given directly by $b_{t,u}$

Ehsan Variani, et al. Hybrid Autoregressive Transducer (HAT). IEEE ICASSP 2020.

Speaker attribution with SURT Synchronization by sharing <blk>

- If ASR branch emits <blk> do the same for speaker branch
- This is achieved by using HAT-style blank factorization, and sharing blank logit between ASR and speaker branch



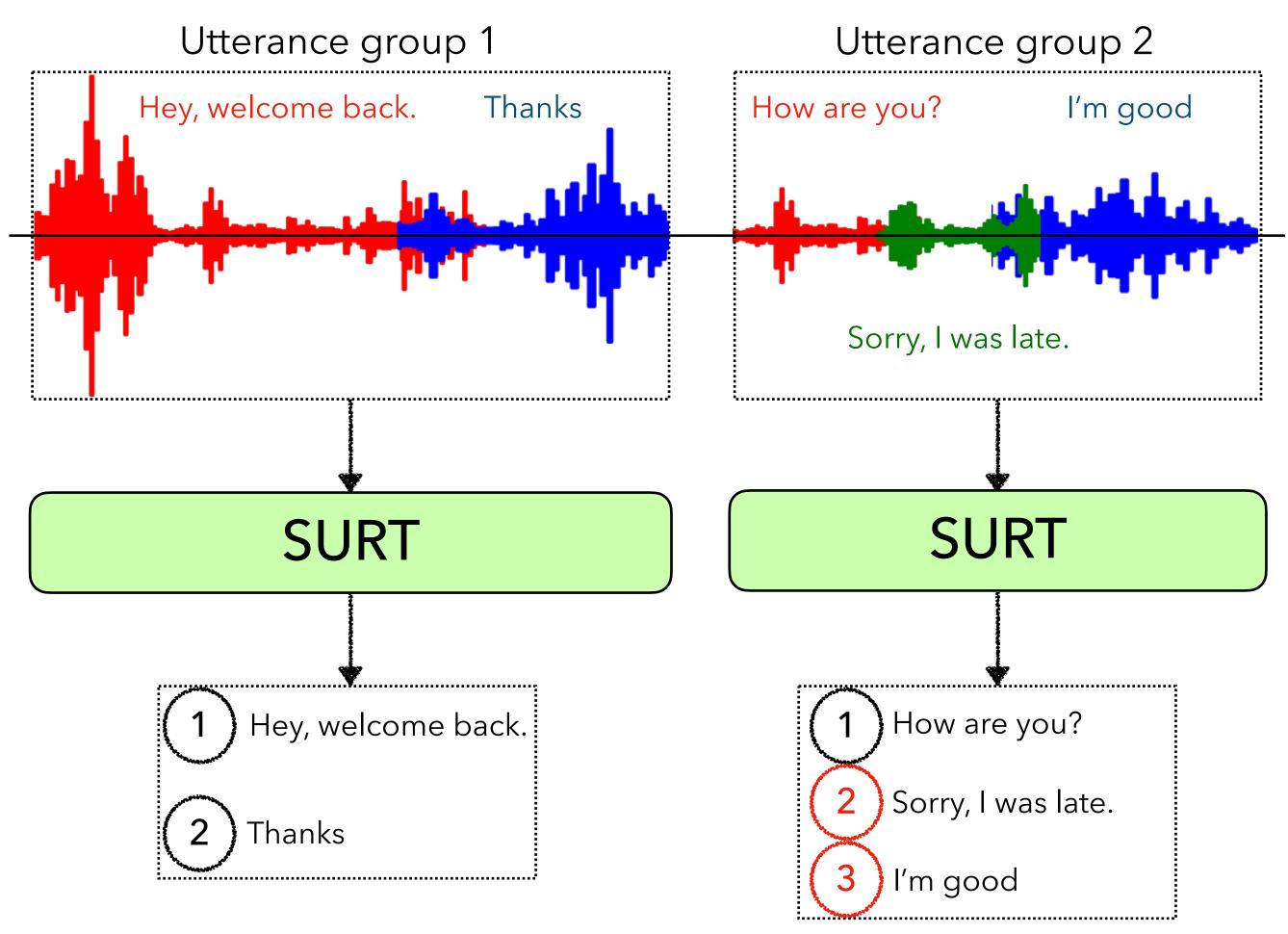
18

Speaker attribution with SURT **Results on AMI (evaluation on utterance groups)**

Utterance group = set of utterances connected by overlaps or short pauses

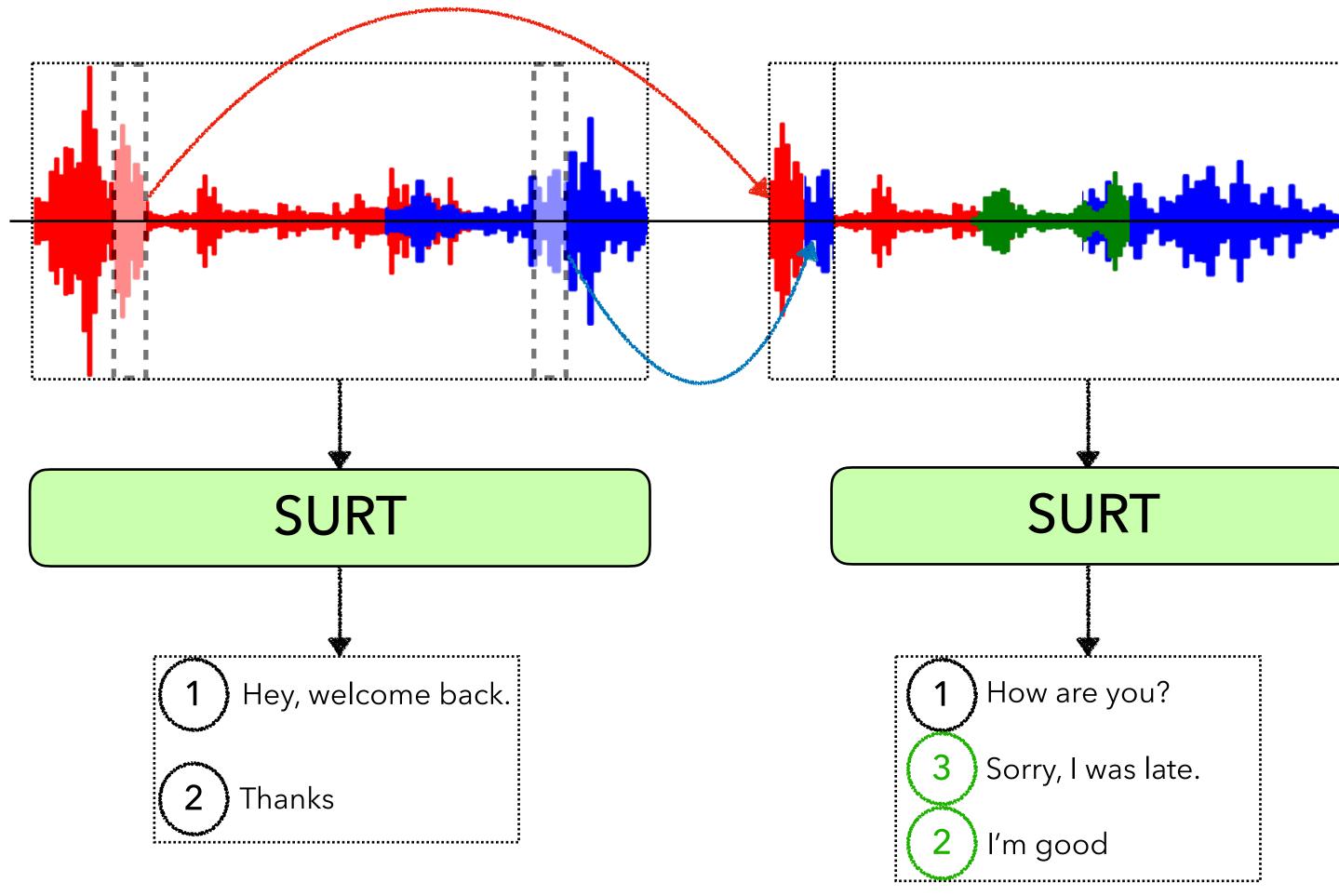
Mic Setting	ORC-WER	WDER	Streaming cpWER	Offline Modular System cpWER
Close-talk	34.9	9.3	42.3	
Far-field	43.2	10.9	50.3	38.5

Speaker attribution with SURT From utterance groups to full sessions



 How to maintain relative speaker labels when processing different utterance groups within the same session?

Speaker attribution with SURT Speaker prefixing approach



- Extract high-confidence frames of predicted speakers and prefix them in front of current input.
- Remove prefixed part from encoder representation.

Summary

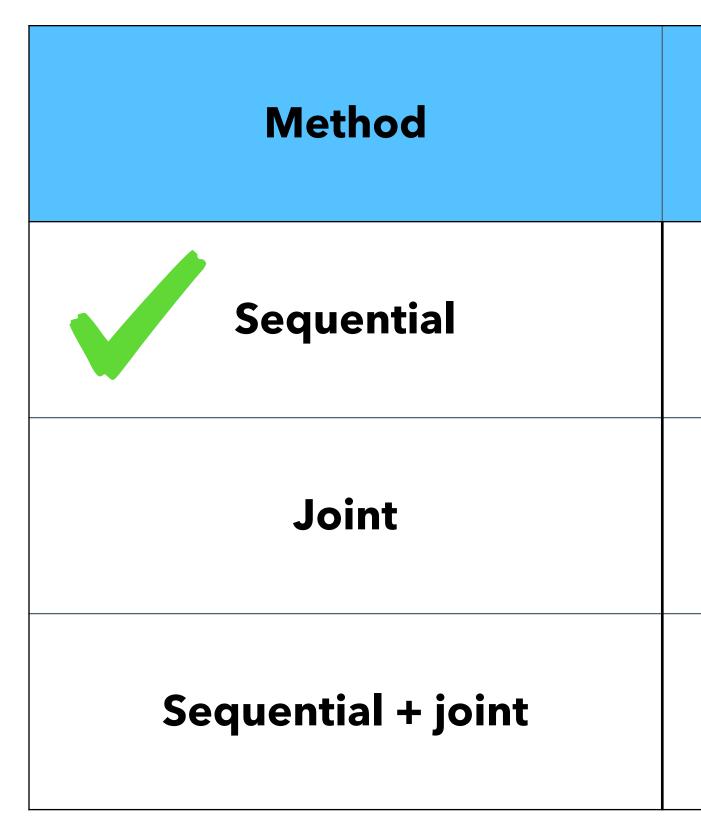
- We showed that the same models that do transcription can also do speaker attribution with small changes!
- For more results and analysis, please refer to our paper.
- this content better."

• Reviewer #5: "I assume the authors are very eager to have these results published in Odyssey since a different (and longer) format would probably have suited

Extra Slides

Speaker attribution with SURT Joint vs. sequential training

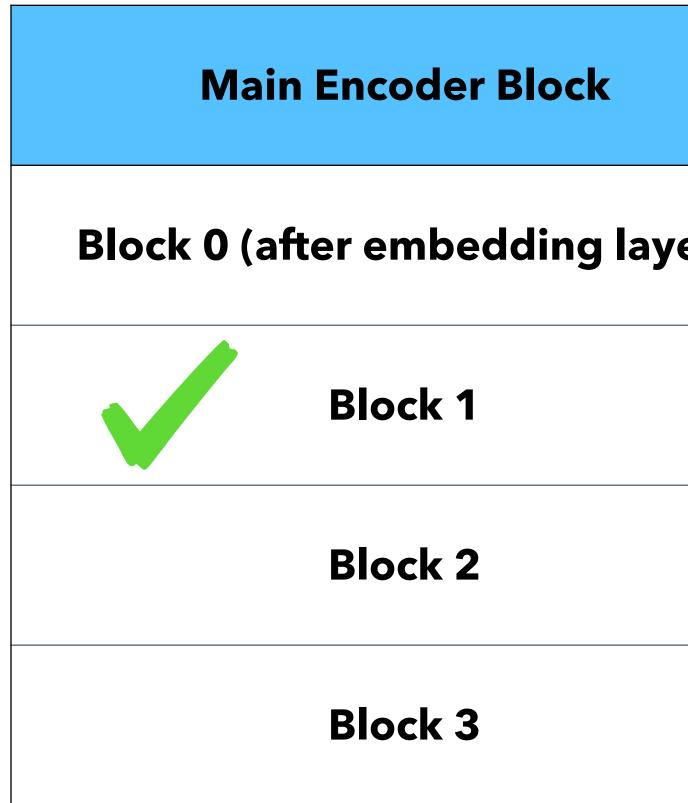
Experiments on simulated LibriSpeech mixtures



ORC-WER	WDER	cpWER
8.5	4.0	15.0
8.4	4.5	15.0
9.2	4.3	15.3

Speaker attribution with SURT Where to branch out of the main encoder?

Experiments on simulated LibriSpeech mixtures



	WDER	cpWER
er)	5.4	16.7
	4.0	15.0
	6.7	19.6
	8.4	23.4

Speaker attribution with SURT Evaluation on AMI IHM-Mix setting

"Enrollment" = using small chunk from speaker's enrollment speech for prefixing

Evaluation	Method	cpWER
Utterance group	SURT w/o speaker prefix	42.3
	SURT w/o speaker prefix	100.1
Full session	SURT w/ speaker prefix (128 frames = 1.28s per speaker)	82.8
	+ enrollment	53.8