Listening to Multi-talker Conversations

Modular and End-to-end Perspectives

Desh Raj August 18, 2023

Motivation

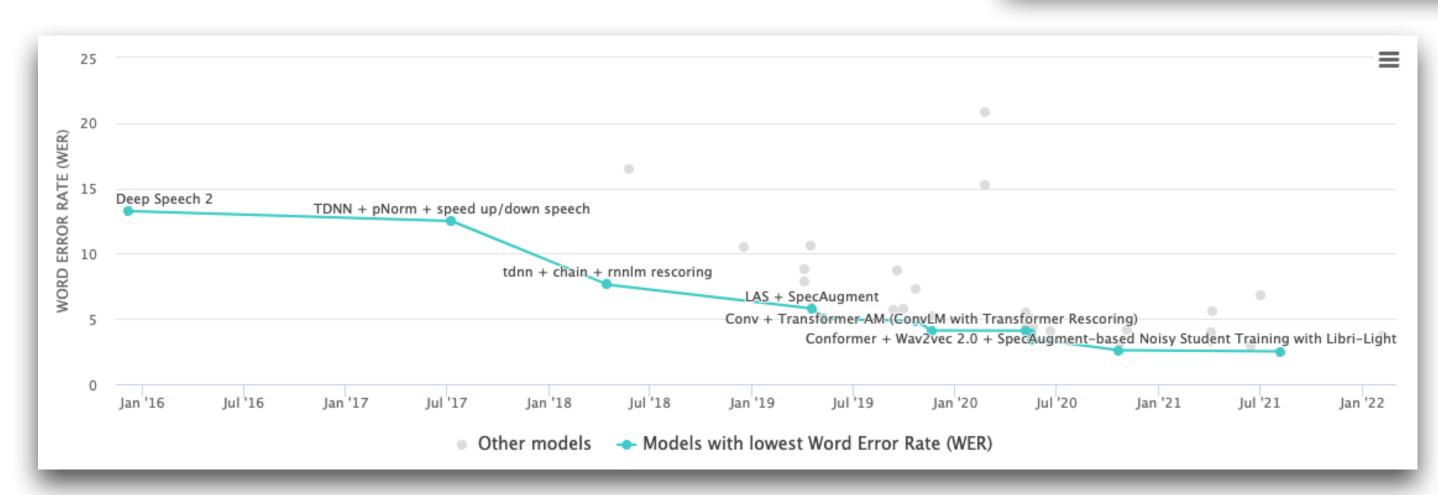
① OCTOBER 20, 2020

Al outperforms humans in speech recognition

by Monika Landgraf, Karlsruhe Institute of Technology

Microsoft claims new speech recognition record, achieving a super-human 5.1% error rate

BY TODD BISHOP on August 20, 2017 at 7:44 pm



https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-other

Motivation

Single-user applications

Smart Assistants

Customer Service

Language Learning

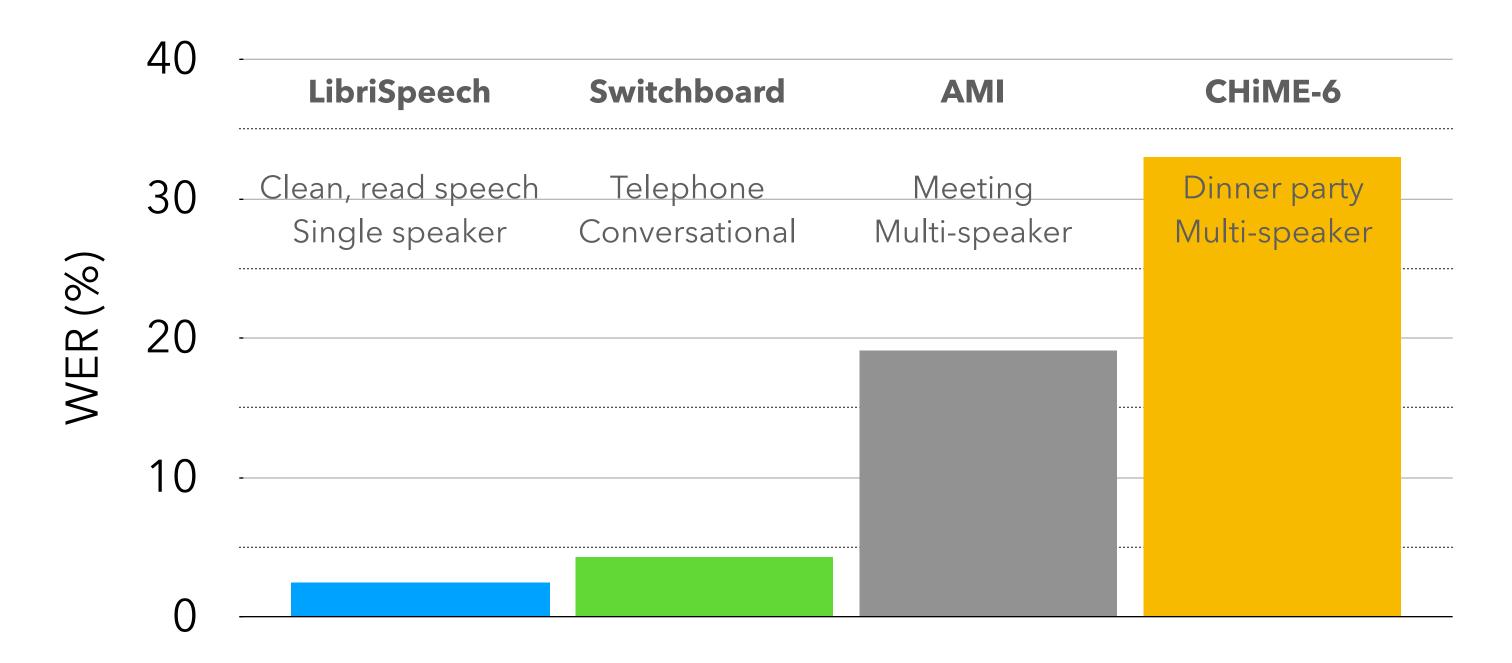
Voice-based Search

Collaborative Learning

Cocktail-party Problem

Motivation

Common ASR benchmarks



What changed?

- Conversational speech
- Far-field audio: noise and reverberation
- Overlapping speakers

Problem Statement

Multi-talker speaker-attributed ASR

• **Input:** long unsegmented (possibly multi-channel) recording containing multiple speakers.

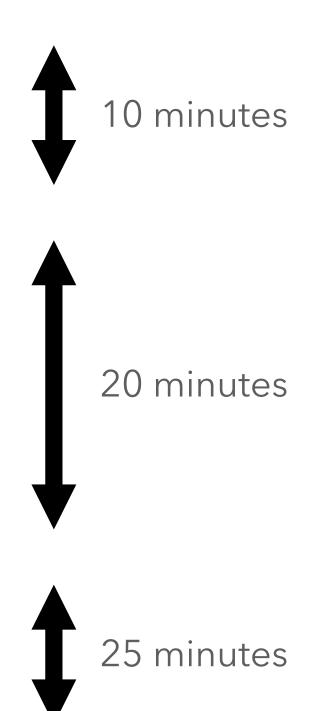
Output:

- Transcription of the recording (speech recognition)
- Speaker attribution (diarization)
- Additional constraints: streaming, i.e., real-time transcription
- We specifically look at "meetings": LibriCSS, AMI, AliMeeting

Today's talk

"Modular" and "end-to-end" perspectives

- 1. Overlap-aware speaker diarization
- 2. Target-speaker methods
 - (i) Extraction using guided source separation
 - (ii) Recognition using neural transducers
- 3. Streaming Unmixing and Recognition Transducer (SURT)



Overlap-aware Speaker Diarization

Background

What is speaker diarization?

Task of "who spoke when"

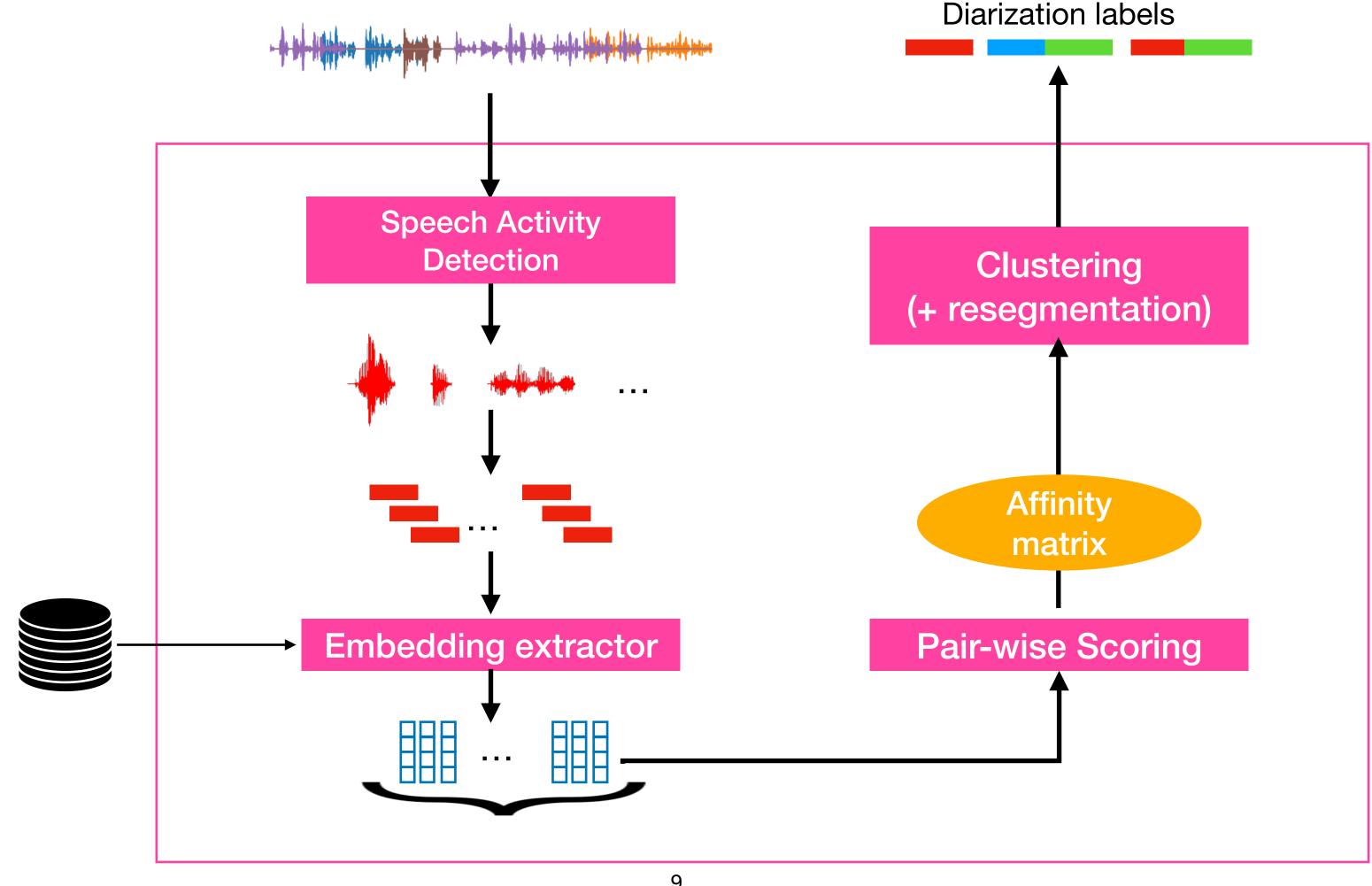
Input: recording containing multiple speakers

- to be the party of the party

Output: homogeneous speaker segments

Clustering-based diarization

Overview of the process



Clustering paradigm assumes single-speaker segments

So overlapping speakers are completely ignored!

"Roughly **8% of the absolute error** in our systems was from overlapping speech ... it will likely require a **complete rethinking of the diarization**process ... This is an important direction, but could not be addressed ..."

- JHU team (2018)

"Given the current performance of the systems, the **overlapped speech gains more relevance** ... **more than 50% of the DER** in our best systems ... has to be addressed in the future ..."

- BUT team (2019)

Overlap-aware diarization

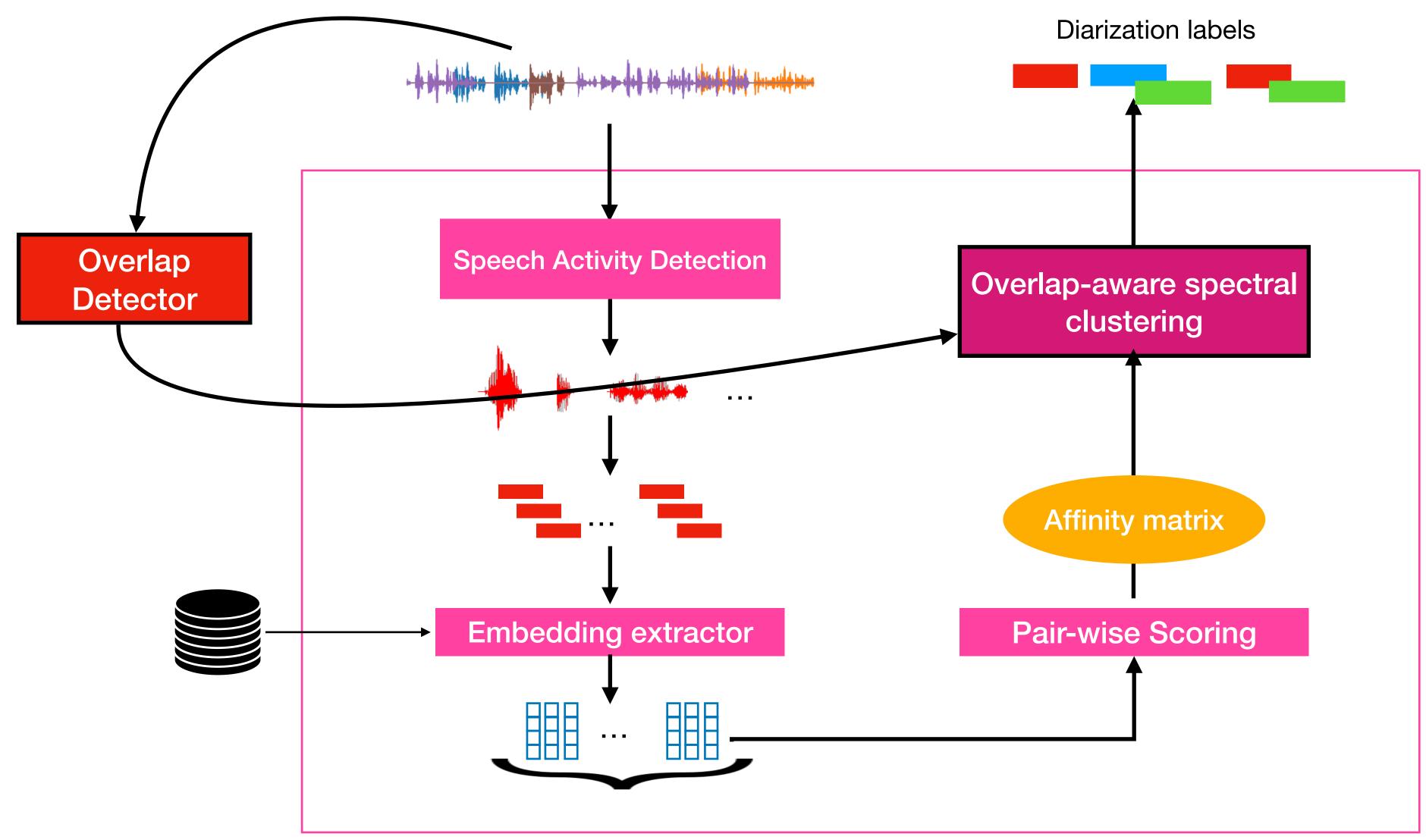
MULTI-CLASS SPECTRAL CLUSTERING WITH OVERLAPS FOR SPEAKER DIARIZATION

Desh Raj¹, Zili Huang¹, Sanjeev Khudanpur^{1,2}

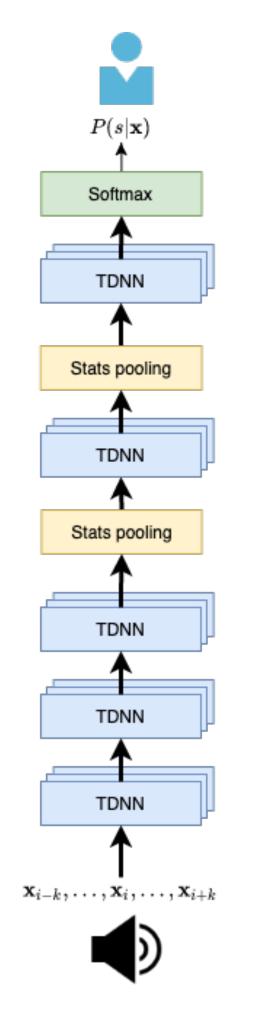
¹Center for Language and Speech Processing & ²Human Language Technology Center of Excellence The Johns Hopkins University, Baltimore, MD 21218, USA.

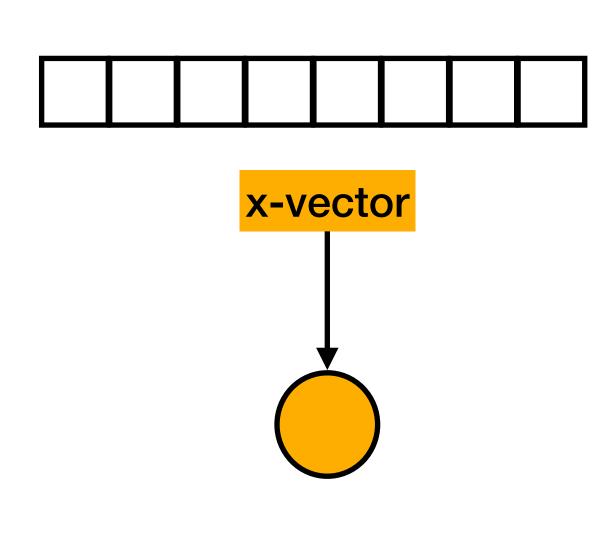
Published at

Overlap-aware spectral clustering

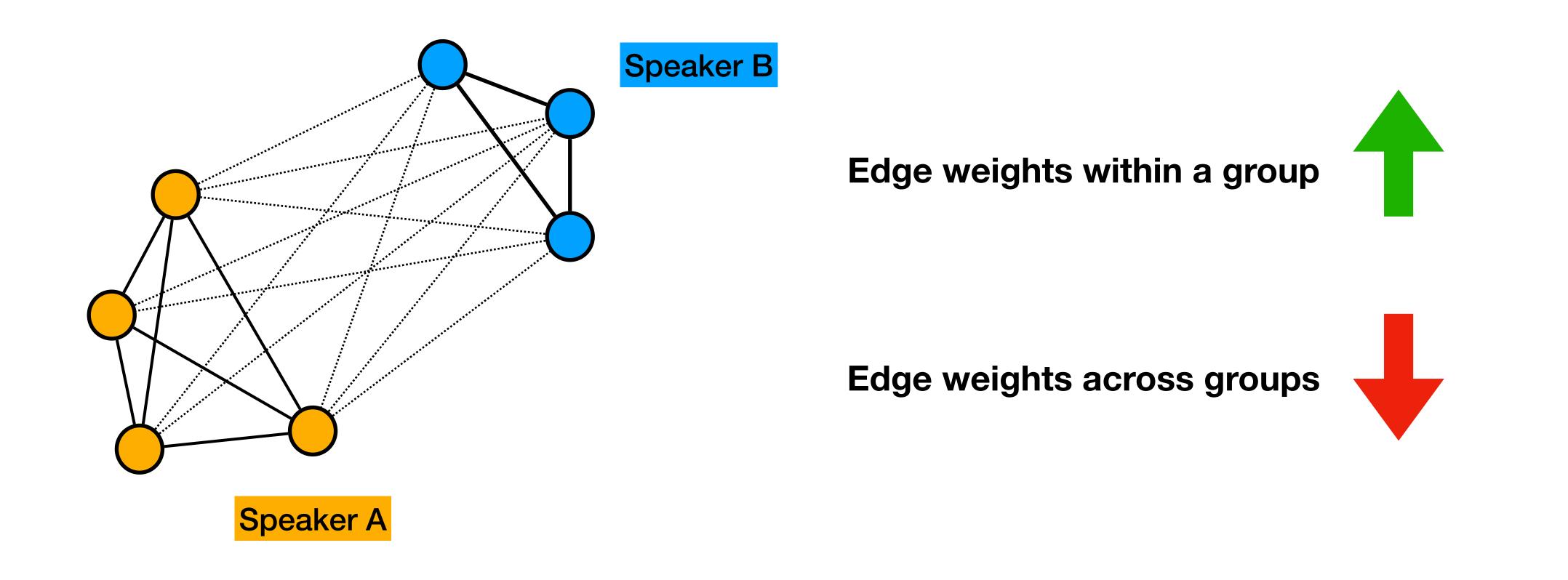


The basic clustering problem: a graph view



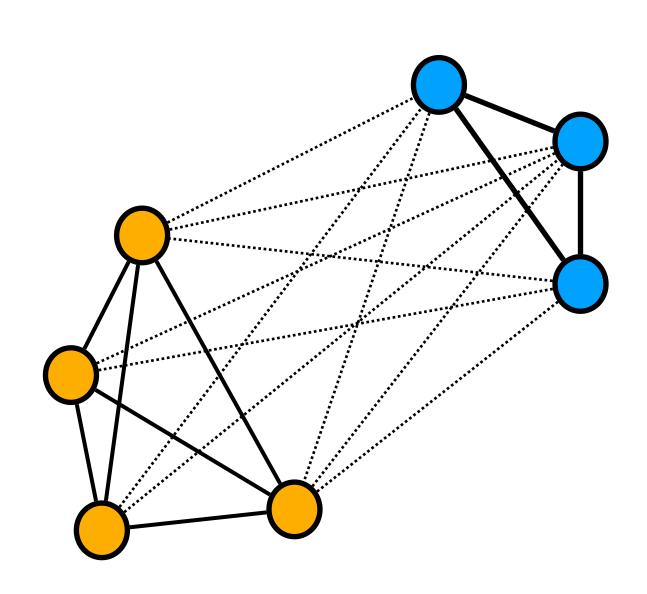


The basic clustering problem: a graph view



maximize

The basic clustering problem: a graph view



Edge weights within a group

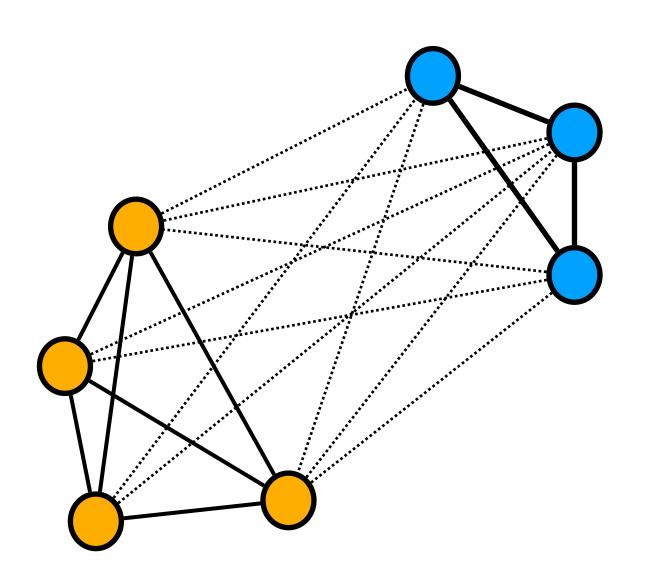
Edge weights across groups

maximize
$$\epsilon(X) = \frac{1}{K} \sum_{k=1}^{K} \frac{X_k^T A X_k}{X_k^T D X_k}$$

subject to
$$X \in \{0,1\}^{N \times K}$$
, $X\mathbf{1}_K = \mathbf{1}_N$.

K speakers, N segments

The basic clustering problem: a graph view



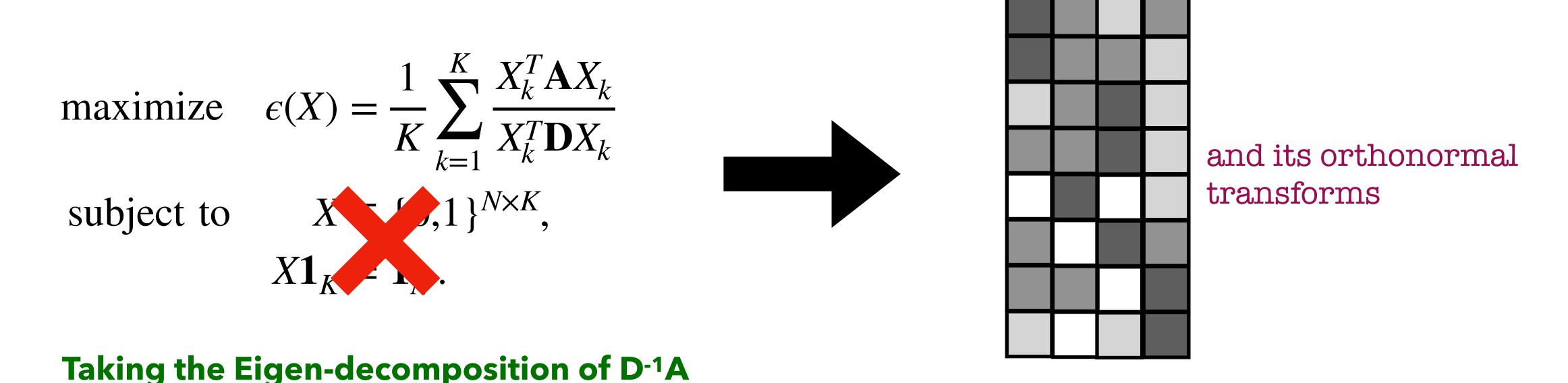


This problem is NP-hard!

maximize
$$\epsilon(X) = \frac{1}{K} \sum_{k=1}^{K} \frac{X_k^T \mathbf{A} X_k}{X_k^T \mathbf{D} X_k}$$
 subject to $X = \{1, 1\}^{N \times K}, X_k =$

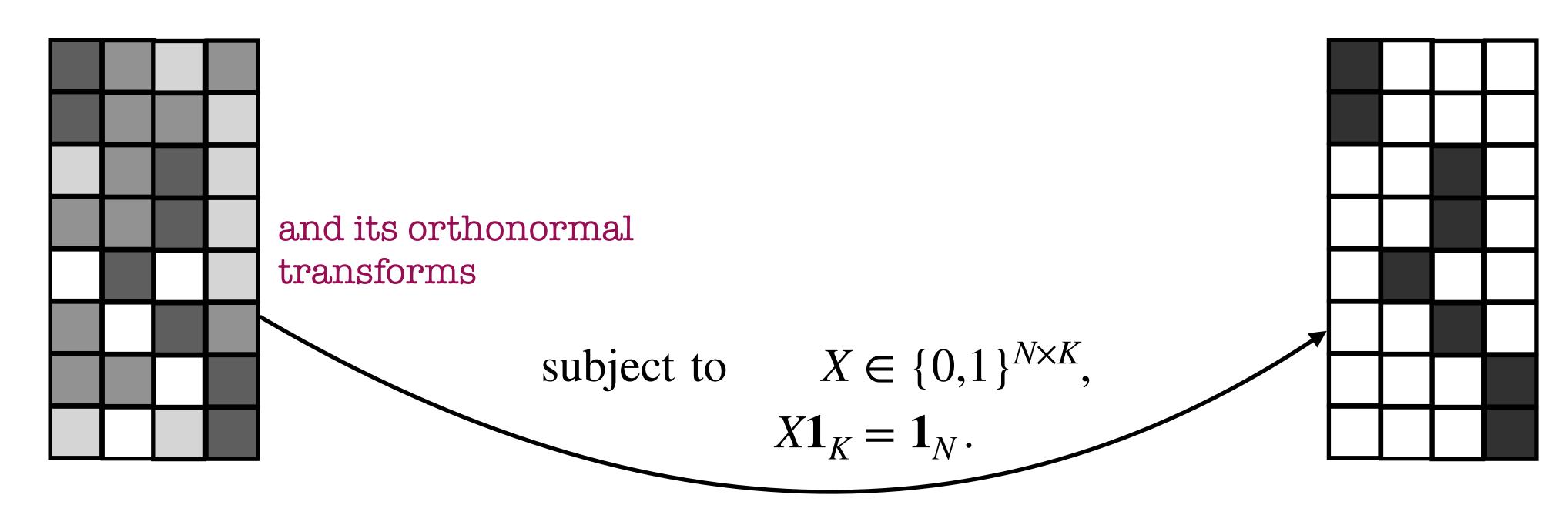
Remove the discrete constraints to make the problem solvable

Relaxed problem has a set of solutions



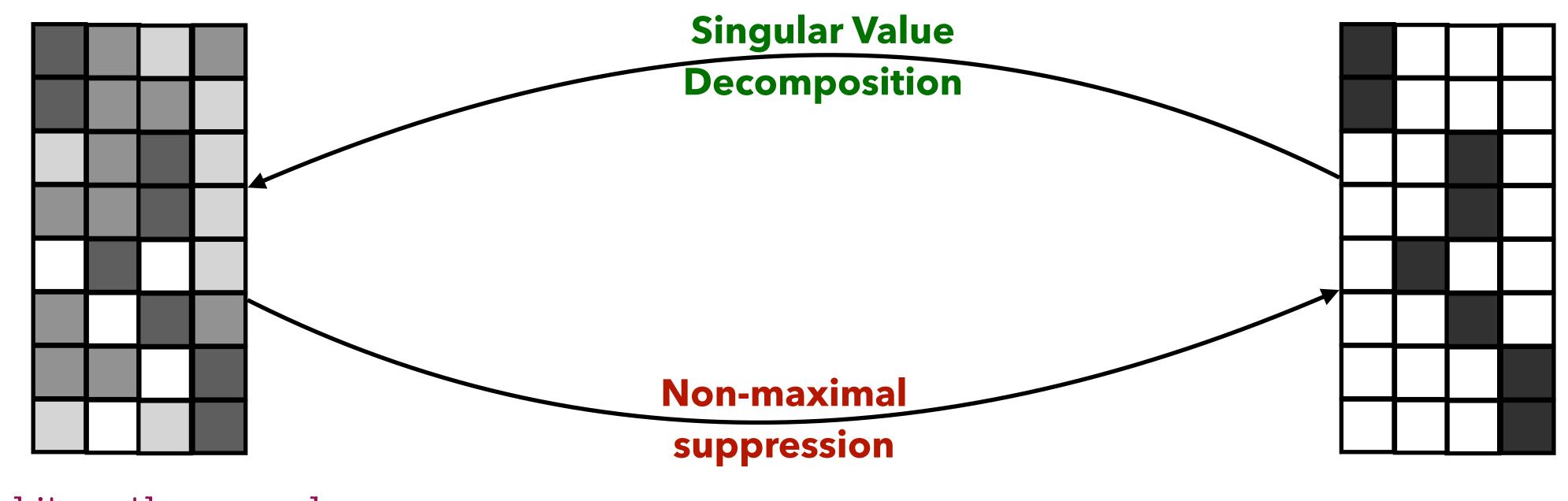
Set of solutions to the relaxed problem

Now we need to discretize this solution!



Find a matrix which is **discrete** and also close to any one of the **orthonormal transformations** of the relaxed solution

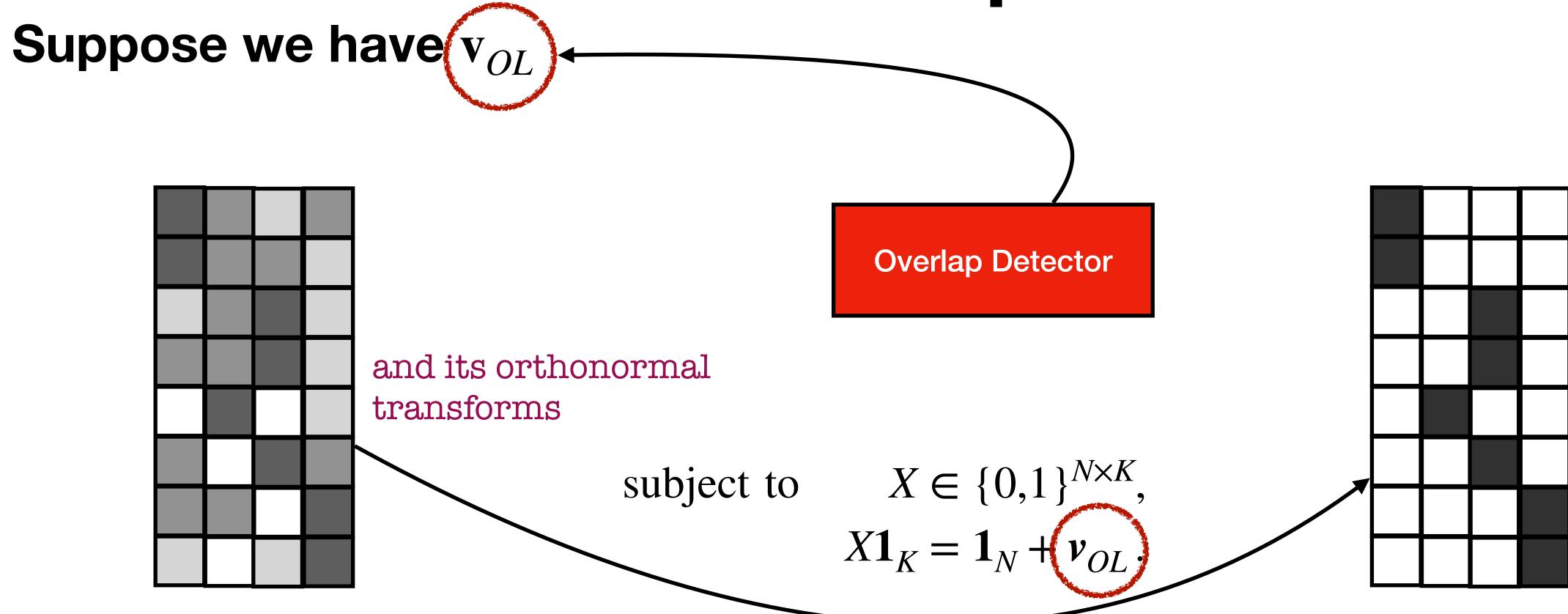
Now we need to discretize this solution!



and its orthonormal transforms

Iterate until convergence

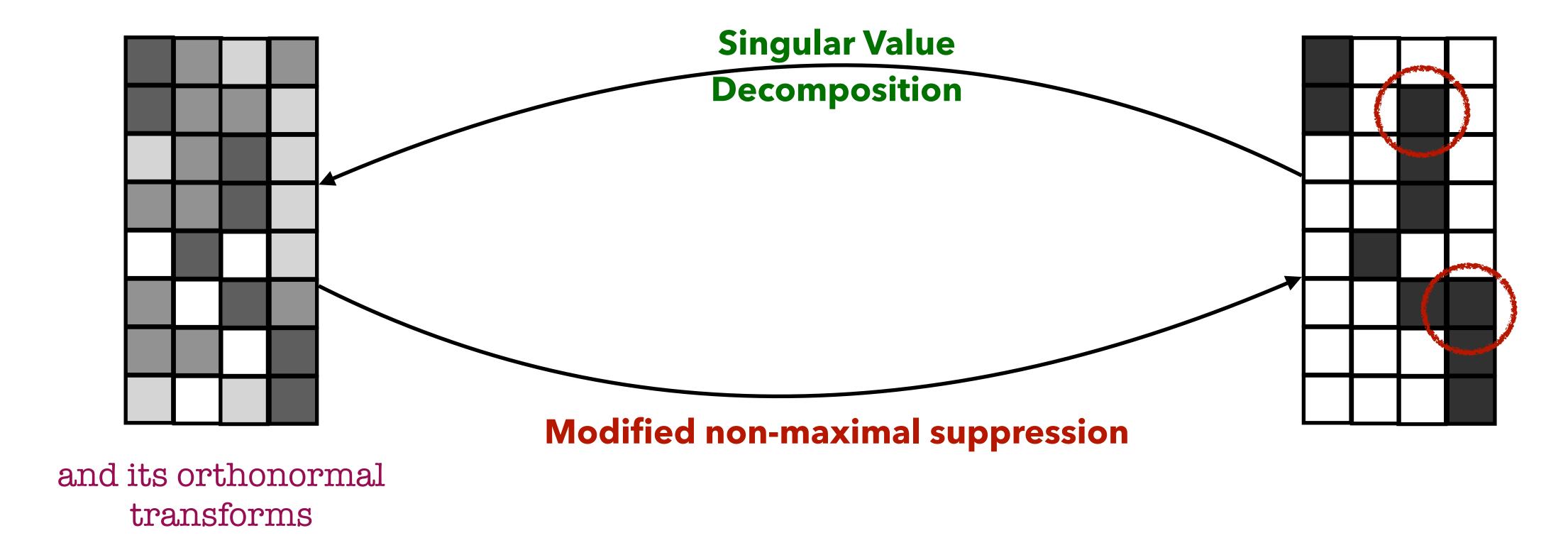
Let us now make it overlap-aware



Discrete constraint is modified to include overlap detector output

Let us now make it overlap-aware

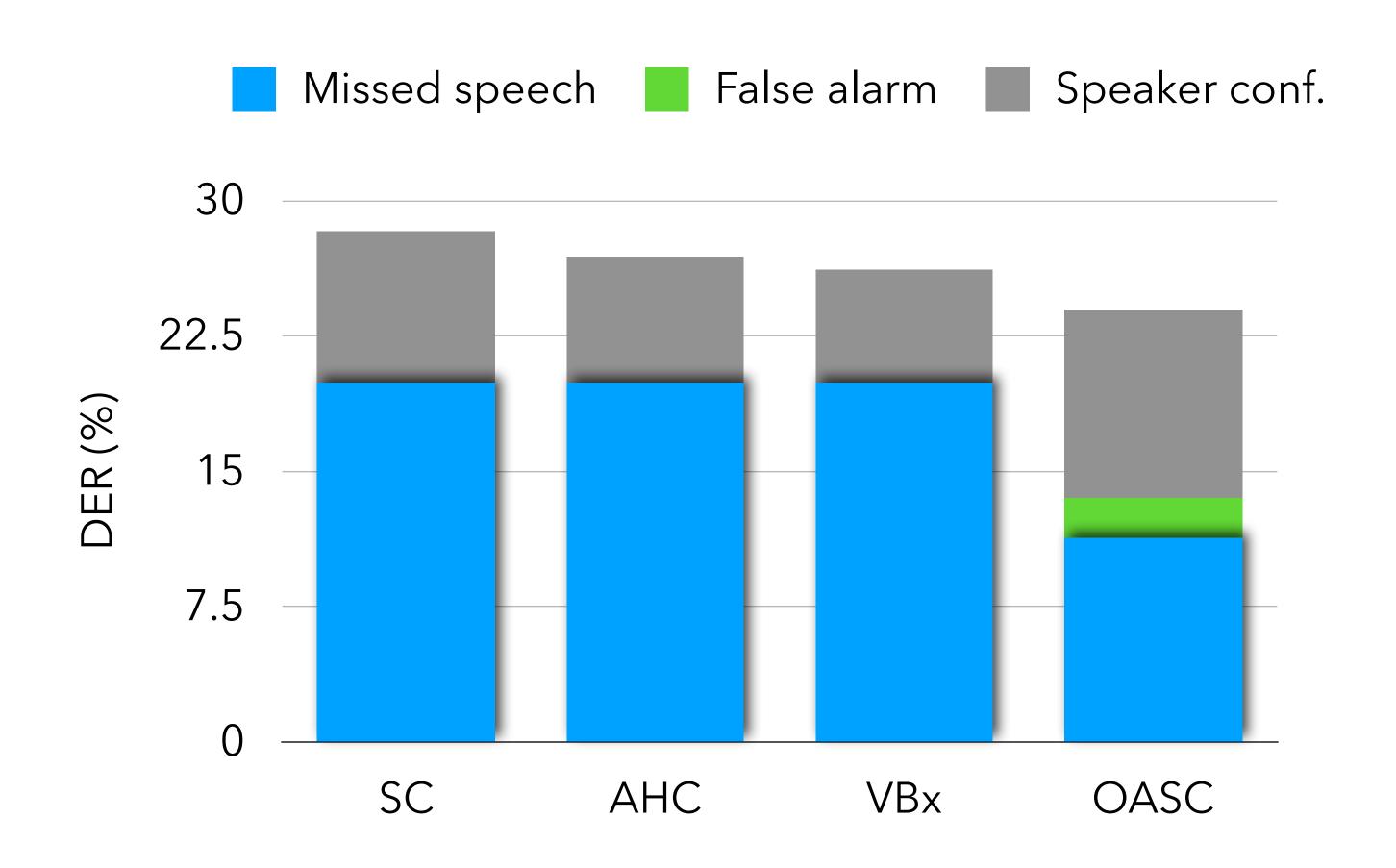
Modify non-maximal suppression to pick top 2 speakers



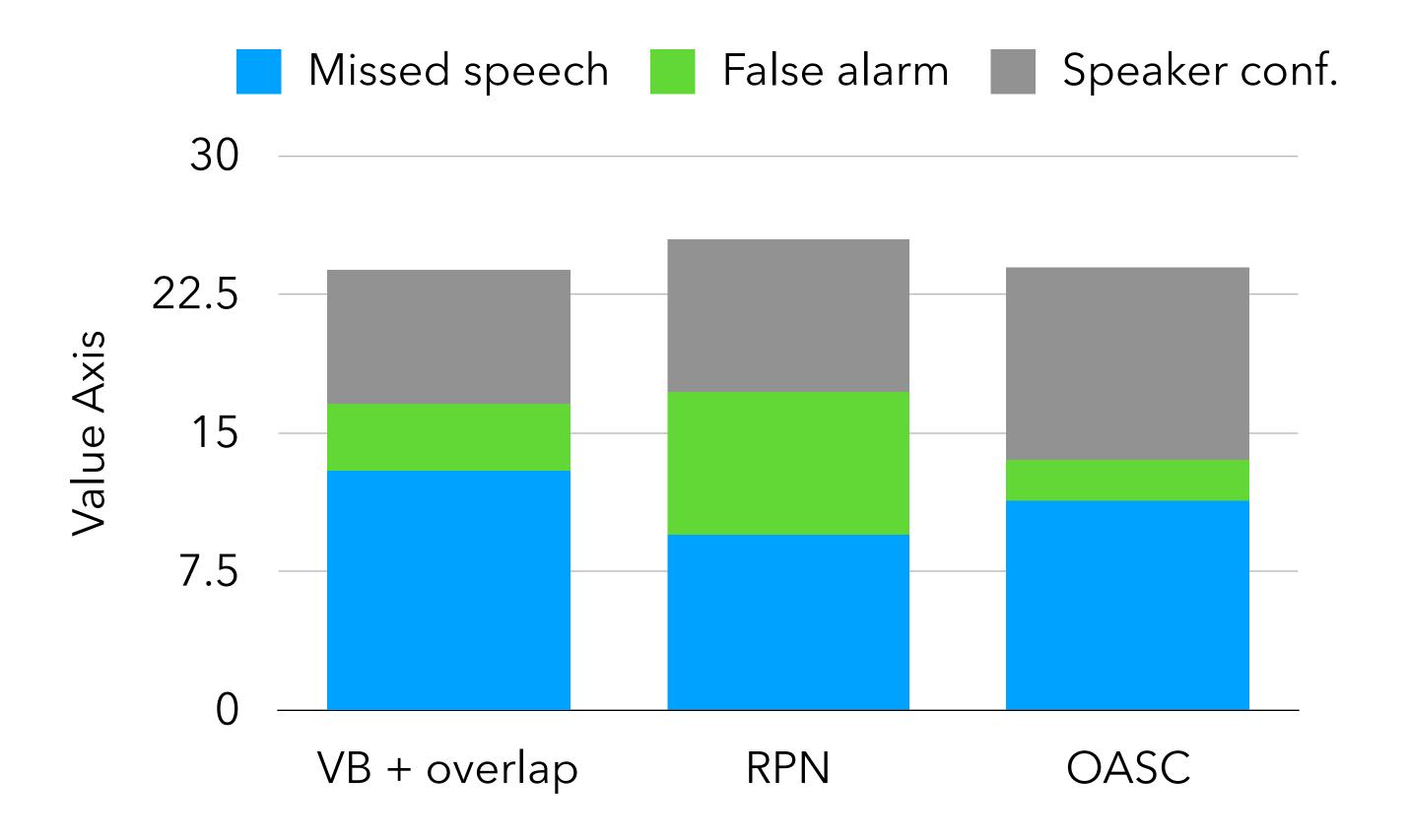
Iterate until convergence

Results on AMI Mix-Headset eval

12.0% relative improvement over spectral clustering baseline



Results on AMI Mix-Headset eval Comparable with other overlap-aware diarization methods



Does not require matching training data or initialization with other diarization systems.

Overlap-aware Diarization Further reading

- 1. "Probing the infomation encoded in x-vectors." **D. Raj**, D. Snyder, D. Povey, S. Khudanpur. *IEEE ASRU 2019*.
- 2. "DOVER-Lap: A method for combining overlap-aware diarization outputs." **D. Raj**, P. Garcia, Z. Huang, S. Watanabe, D. Povey, A. Stolcke, S. Khudanpur. *IEEE SLT 2021*.
- 3. <u>"The Hitachi-JHU DIHARD III system: Competitive end-to-end neural diarization and x-vector clustering systems combined by DOVER-Lap</u>." S. Horiguchi, N. Yalta, P. Garcia, Y. Takashima, Y. Xue, **D. Raj**, Z. Huang, Y. Fujita, S. Watanabe, S. Khudanpur. *Third DIHARD Speech Diarization Challenge*.
- 4. "<u>Target-speaker voice activity detection with improved i-vector estimation for unknown number of speaker</u>." M. He, **D. Raj**, Z. Huang, J. Du, Z. Chen, S. Watanabe. *InterSpeech 2021*
- 5. "Reformulating DOVER-Lap label mapping as a graph partitioning problem." **D. Raj**, S. Khudanpur. InterSpeech 2021
- 6. "Low-Latency Speech Separation Guided Diarization for Telephone Conversations." G. Morrone, S. Cornell, **D. Raj**, Luca Serafini, Enrico Zovato, Alessio Brutti, Stefano Squartini. *IEEE SLT 2022*.

Remember DIHARD?

Top 2 teams used DOVER-Lap for system fusion in DIHARD III

All top teams at VoxSRC-21 and VoxSRC-22, and M2MeT challenges, used DOVER-Lap!

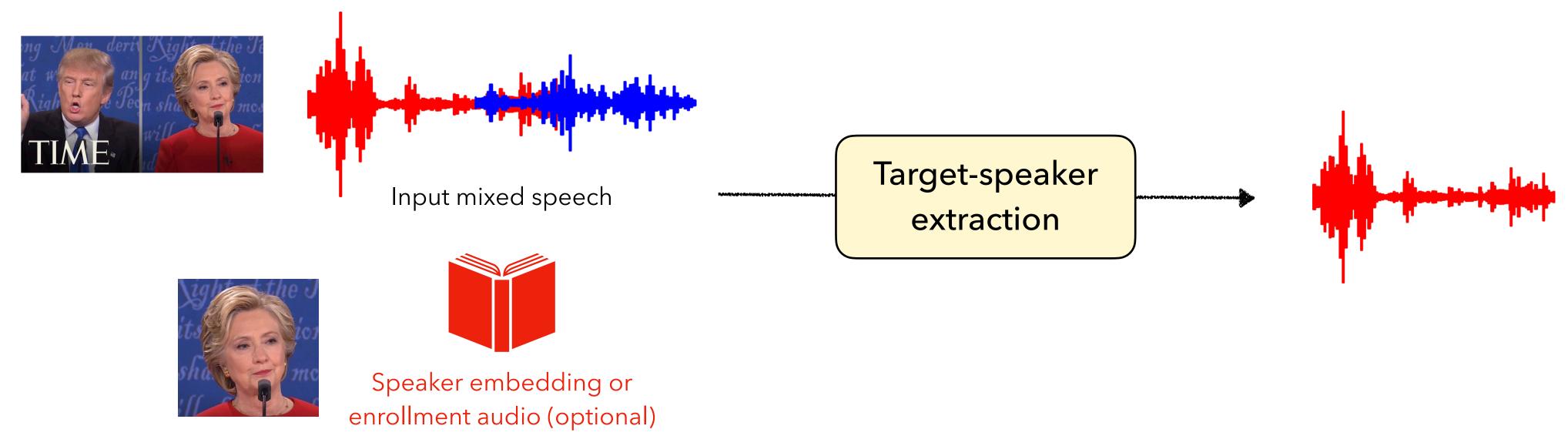
```
$ pip install dover-lap
$ dover-lap <output-rttm> <input-rttms>
```

Target-speaker Methods for ASR

What is target-speaker ASR?

Preliminary: Target speaker extraction

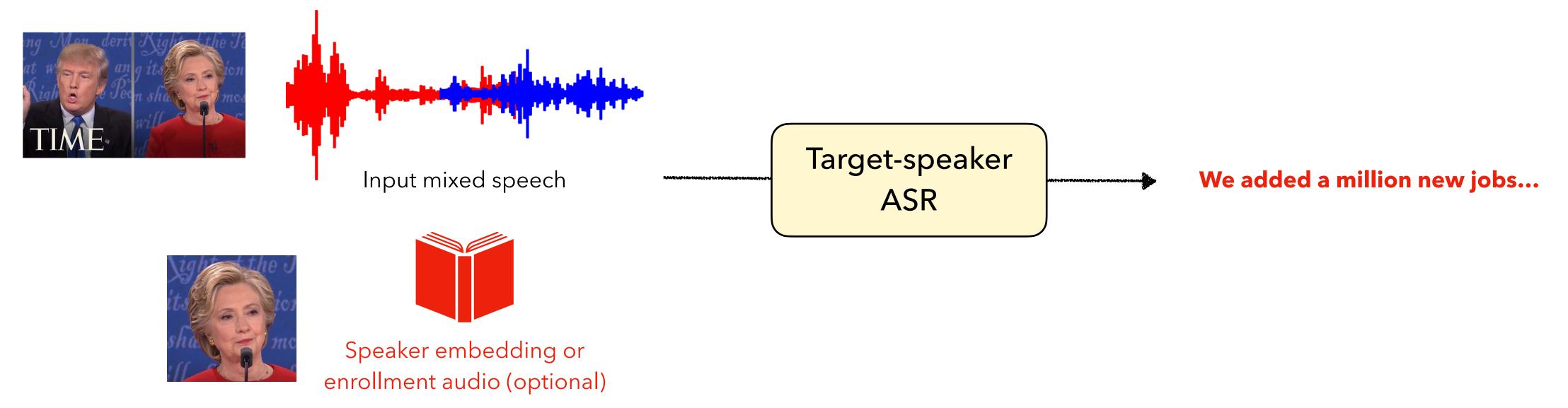
- Given an audio containing mixed speech, extract the speech of a target speaker
- Auxiliary information: enrollment audio or speaker embedding



What is target-speaker ASR?

Target speaker extraction + ASR

- Given an audio containing mixed speech, transcribe the speech of a target speaker
- Auxiliary information: enrollment audio or speaker embedding



What is target-speaker ASR?

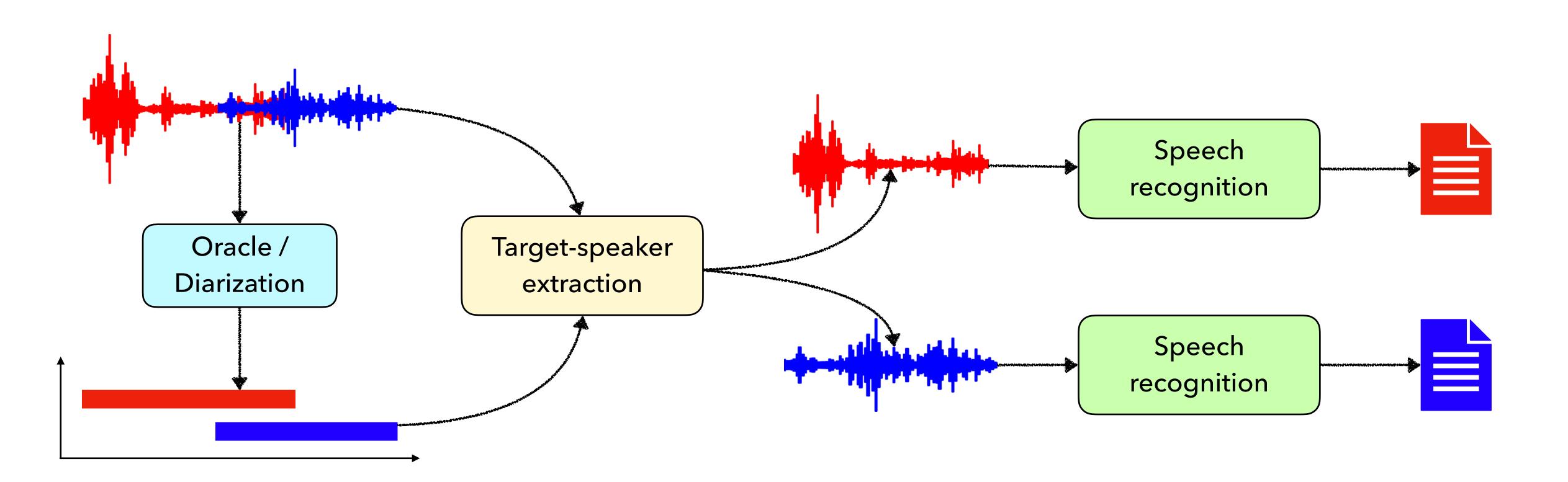
Methods

• Methods used for Target-speaker ASR depend on the application scenario.

Scenario	Meeting Transcription	Voice-based Assistant
Recording device	Multi-channel microphone array	Single microphone
Speakers	Multiple primary	1 primary + background
Wake-word	None	"Hey Siri", "Alexa", etc.
Real-time?	Optional	Required

Meeting Transcription

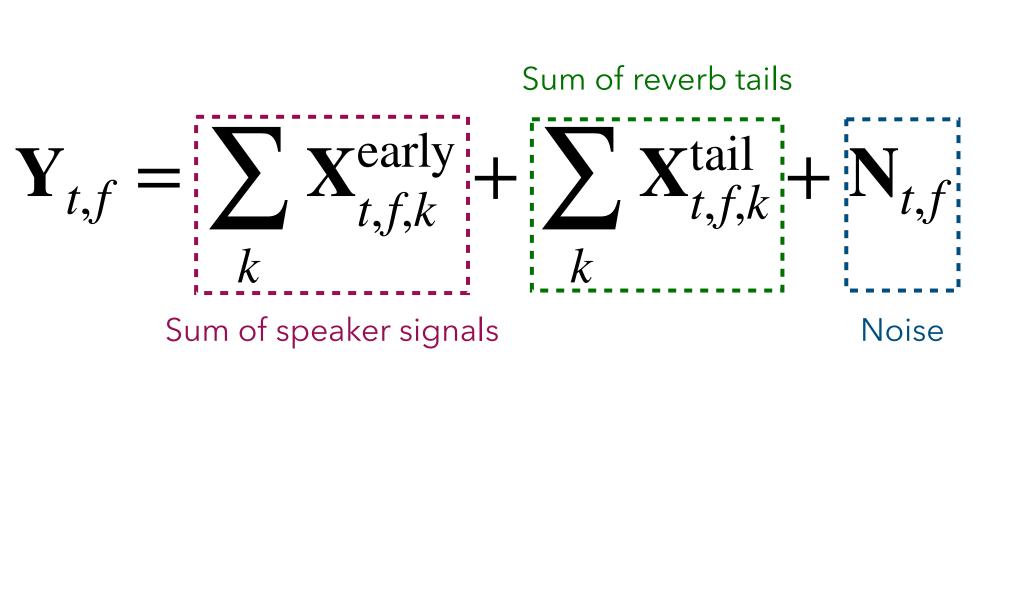
Approach using target speaker methods

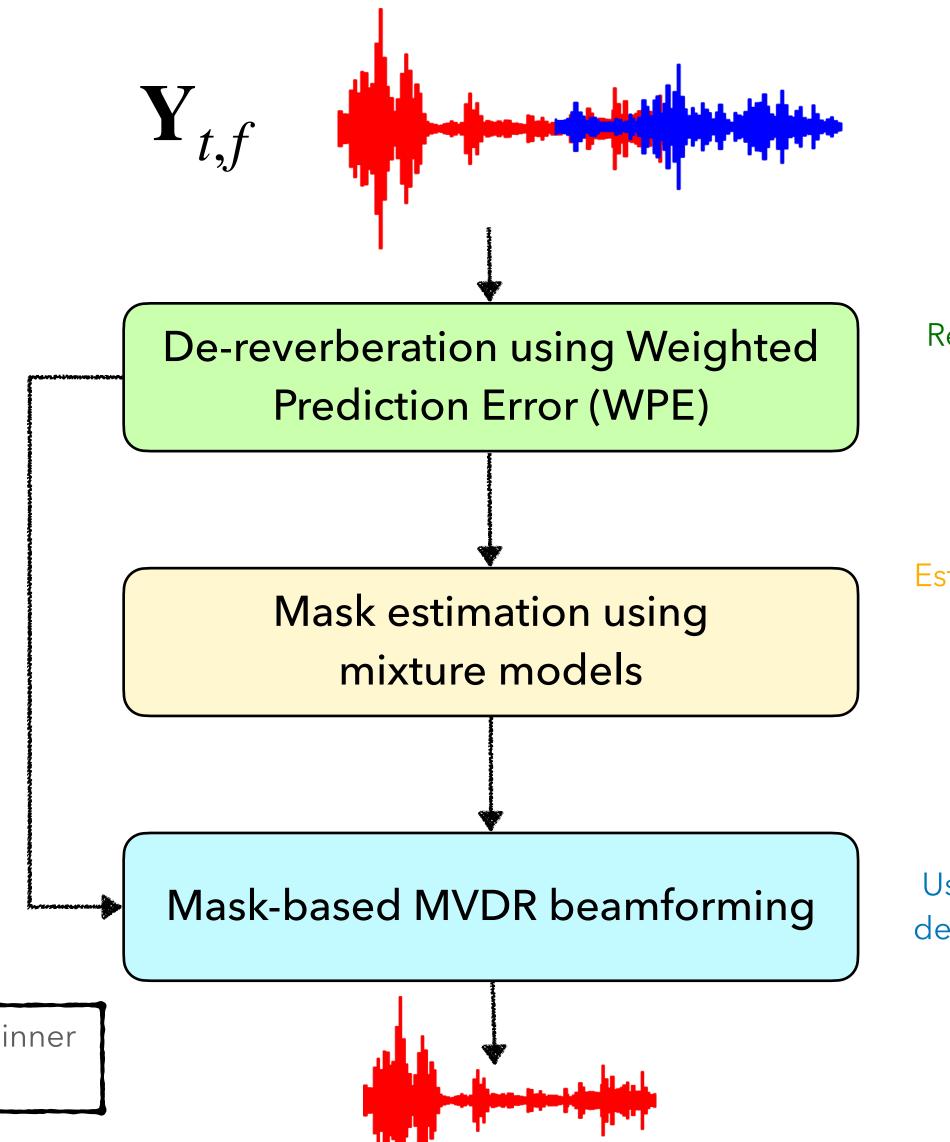


Guided source separation

Consists of 3 main steps

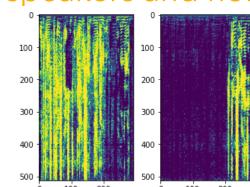
https://github.com/fgnt/pb_chime5





Remove the late reverb

Estimate T-F masks for all speakers and noise



Use T-F masks to extract desired signal from input

Boeddeker, Christoph et al. "Front-end processing for the CHiME-5 dinner party scenario." *CHiME Workshop, 2018*.

Guided source separation

Limitations with original implementation

- Several iterative parts, e.g., mask estimation using complex angular GMMs.
- All implementation on CPU (with NumPy).
- Example: Applying GSS on CHiME-6 dev set takes ~20h with 80 jobs!

Guided source separation

GPU-acceleration + engineering tricks

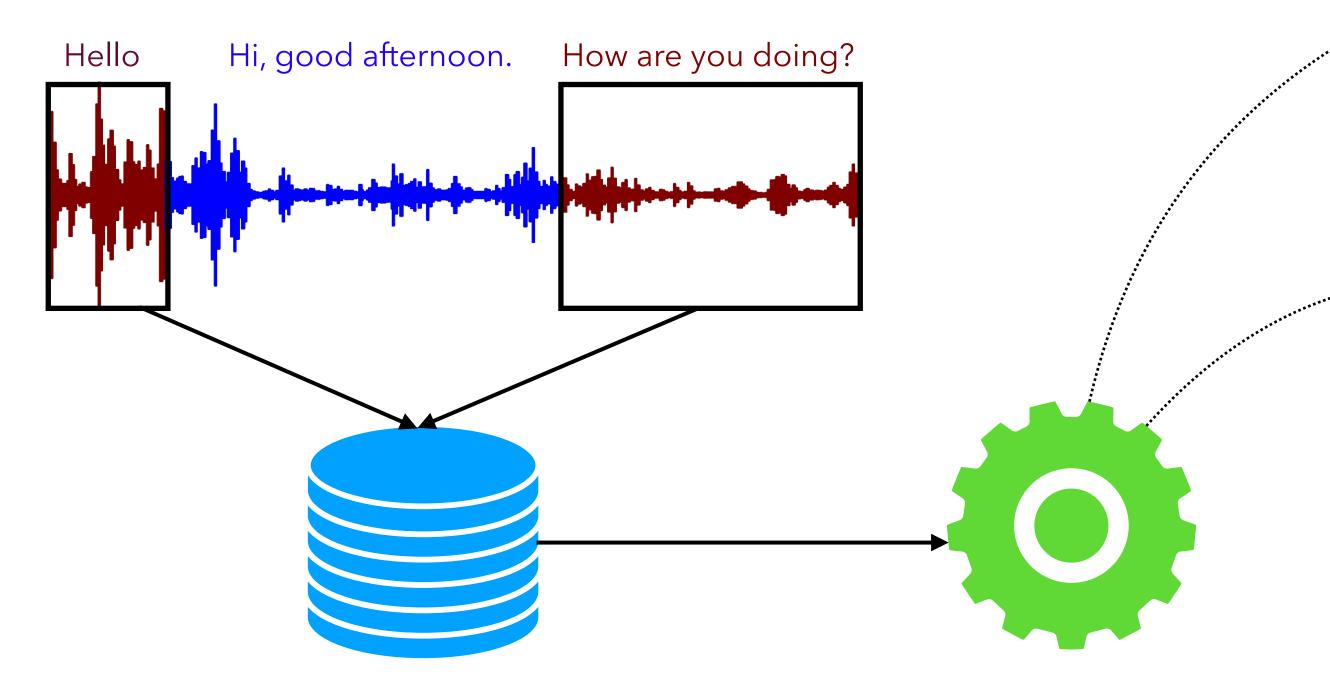
GPU-accelerated Guided Source Separation for Meeting Transcription

Desh Raj¹, Daniel Povey², Sanjeev Khudanpur^{1,3}

¹CLSP & ³HLTCOE, Johns Hopkins University, Baltimore, USA; ²Xiaomi Corp., Beijing, China draj@cs.jhu.edu, dpovey@gmail.com, khudanpur@jhu.edu

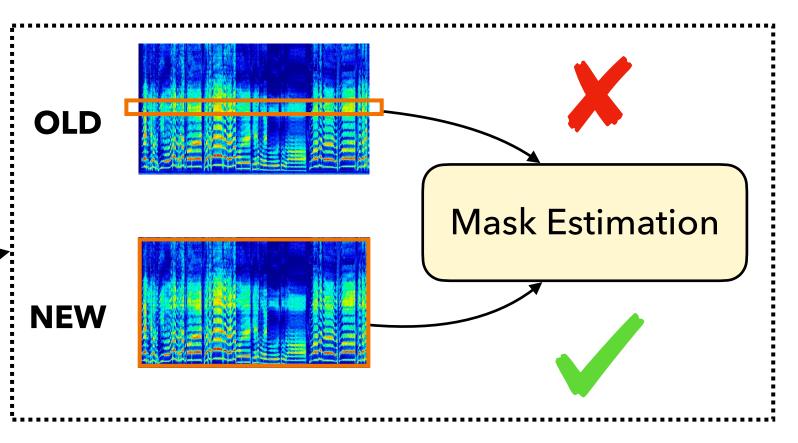
Guided source separation GPU-acceleration + engineering tricks

https://github.com/desh2608/gss



1. CPU-based data-loader performs smart batching of segments

2. STFT computation, WPE, mask estimation on GPU using CuPy



3. Batched processing of STFT frequency bins

```
covariance = D * cp.einsum(
    "...dn,...Dn,...n->...dD",
    y,
    y.conj(),
    (saliency / quadratic_form),
    optimize=einsum_path,
)
```

Cache optimized path on first iteration.

Use same path on subsequent iterations.

4. einsum path caching

Guided source separation Speed-up

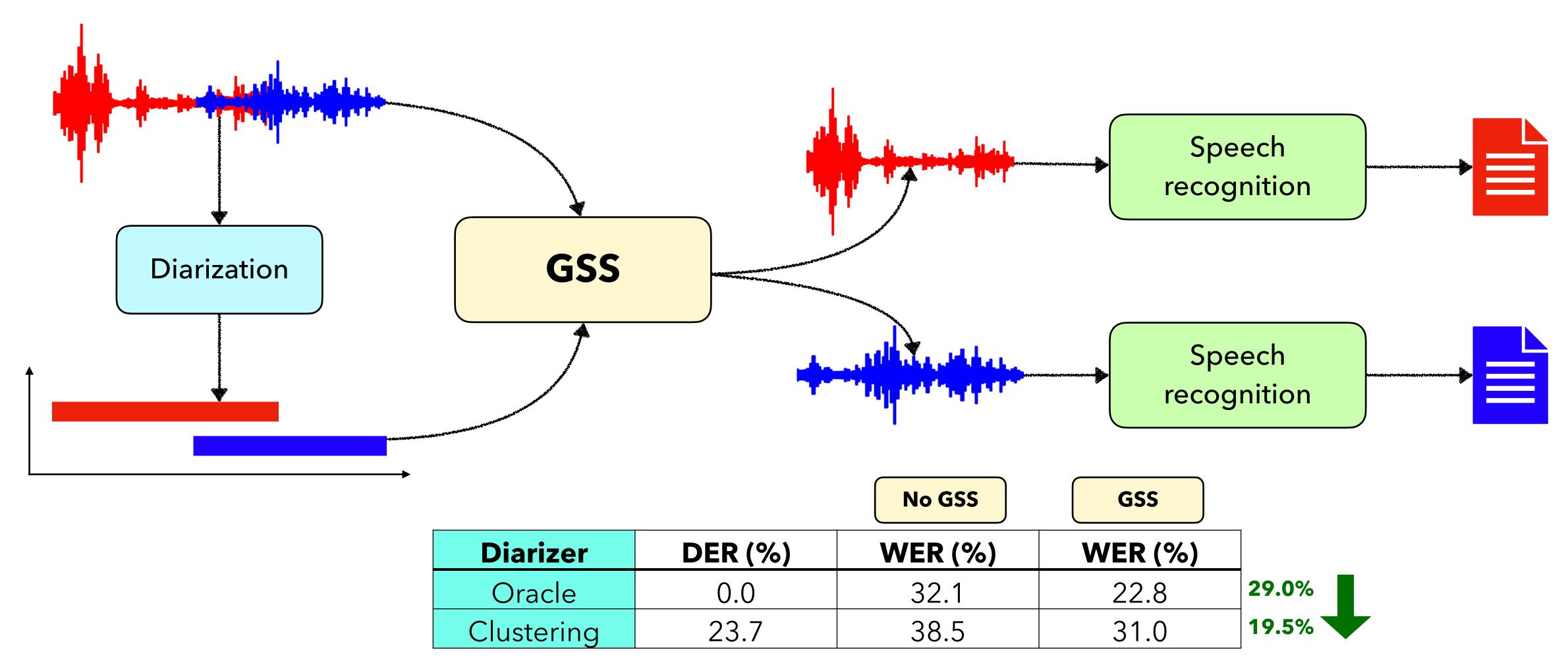
- Comparison on CHiME-6 dev set
- Old GSS: Takes 19.3 hours using 80 jobs
- New GSS: Takes 1.3 hours using 4 GPUs

CHiME-7 DASR Baseline

Part of the official baseline in CHiME-7 DASR challenge: https://www.chimechallenge.org/current/task1/index

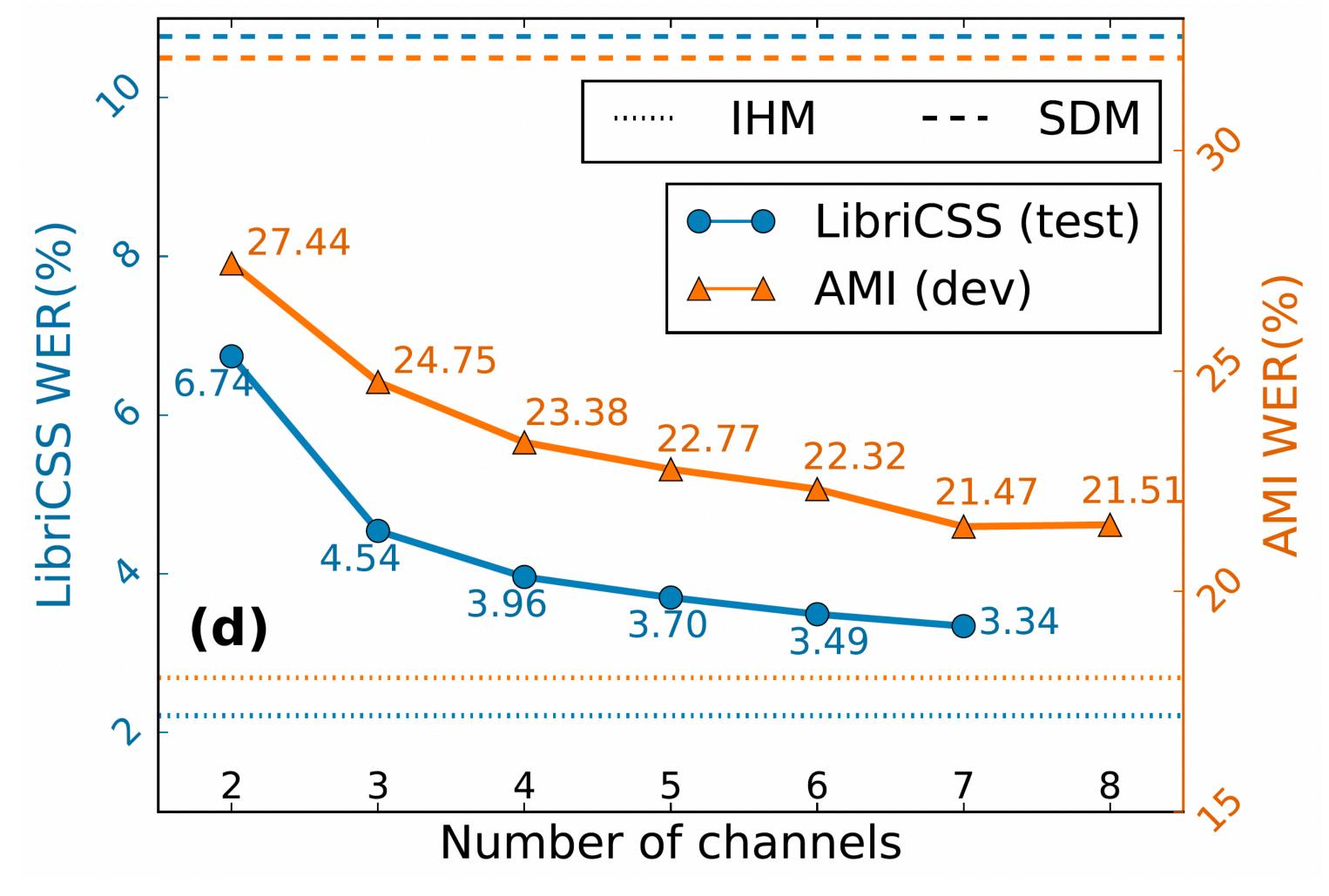
Meeting Transcription

Results on AMI with GSS



Guided source separation

Effect of number of channels



LibriCSS example

REFERENCE:

No GSS

Paul declares that the false apostles were called or sent neither by men nor by man

2 channels

All declares of the false apostles [were] recalled or sent neither by men [nor by man]

7 channels

All declares that the false apostles were called or sent neither by men nor by man

Recall from earlier...

Voice assistant is very different from meeting transcription

• Methods used for Target-speaker ASR depend on the application scenario.

Scenario	Meeting Transcription	Voice-based Assistant
Recording device	Multi-channel microphone array	Single microphone
Speakers	Multiple primary	1 primary + background
Wake-word	None	"Hey Siri", "Alexa", etc.
Real-time?	Real-time? Optional	

Approach using target speaker methods

ANCHORED SPEECH RECOGNITION WITH NEURAL TRANSDUCERS

Desh Raj*¹, Junteng Jia², Jay Mahadeokar², Chunyang Wu², Niko Moritz², Xiaohui Zhang², Ozlem Kalinli²

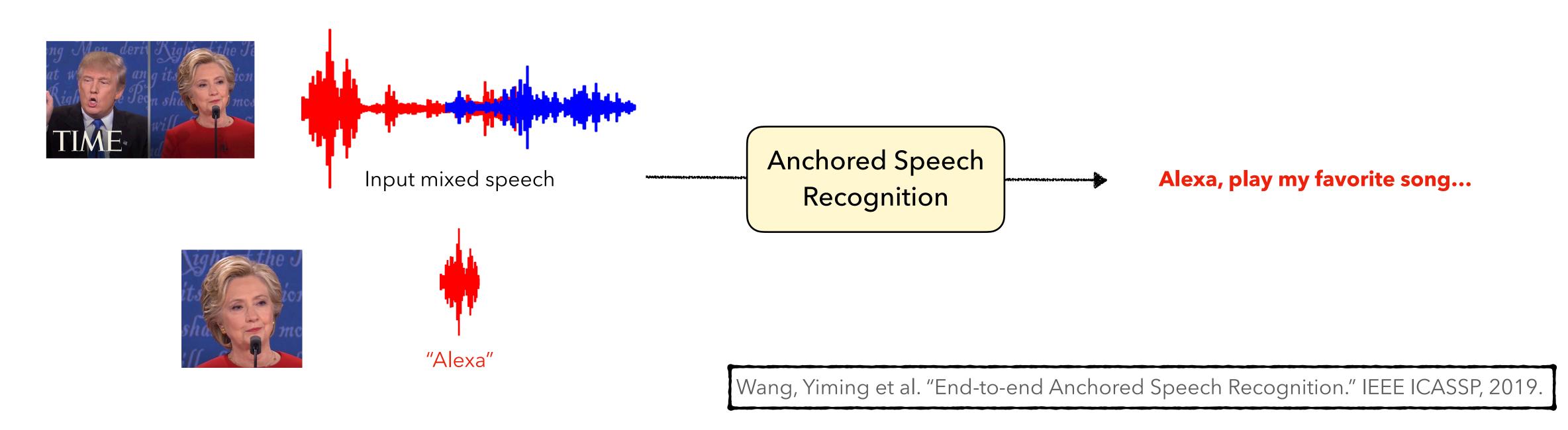
¹Center for Language and Speech Processing, Johns Hopkins University, USA, ²Meta AI, USA

Published at

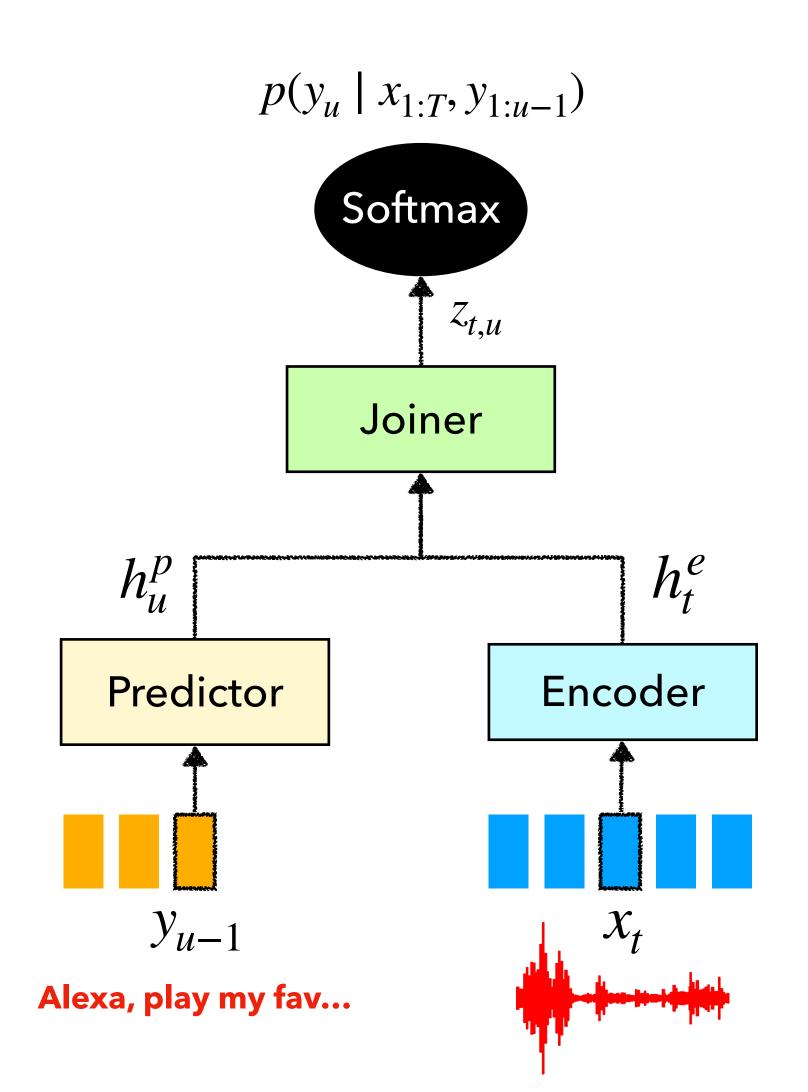
From GSS to anchored speech recognition

"Anchor" = wake-word

- "Alexa, play my favorite song."
- Auxiliary information: "Alexa"

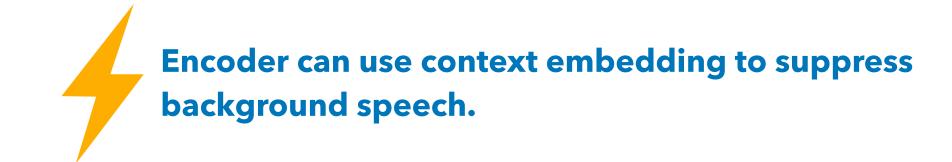


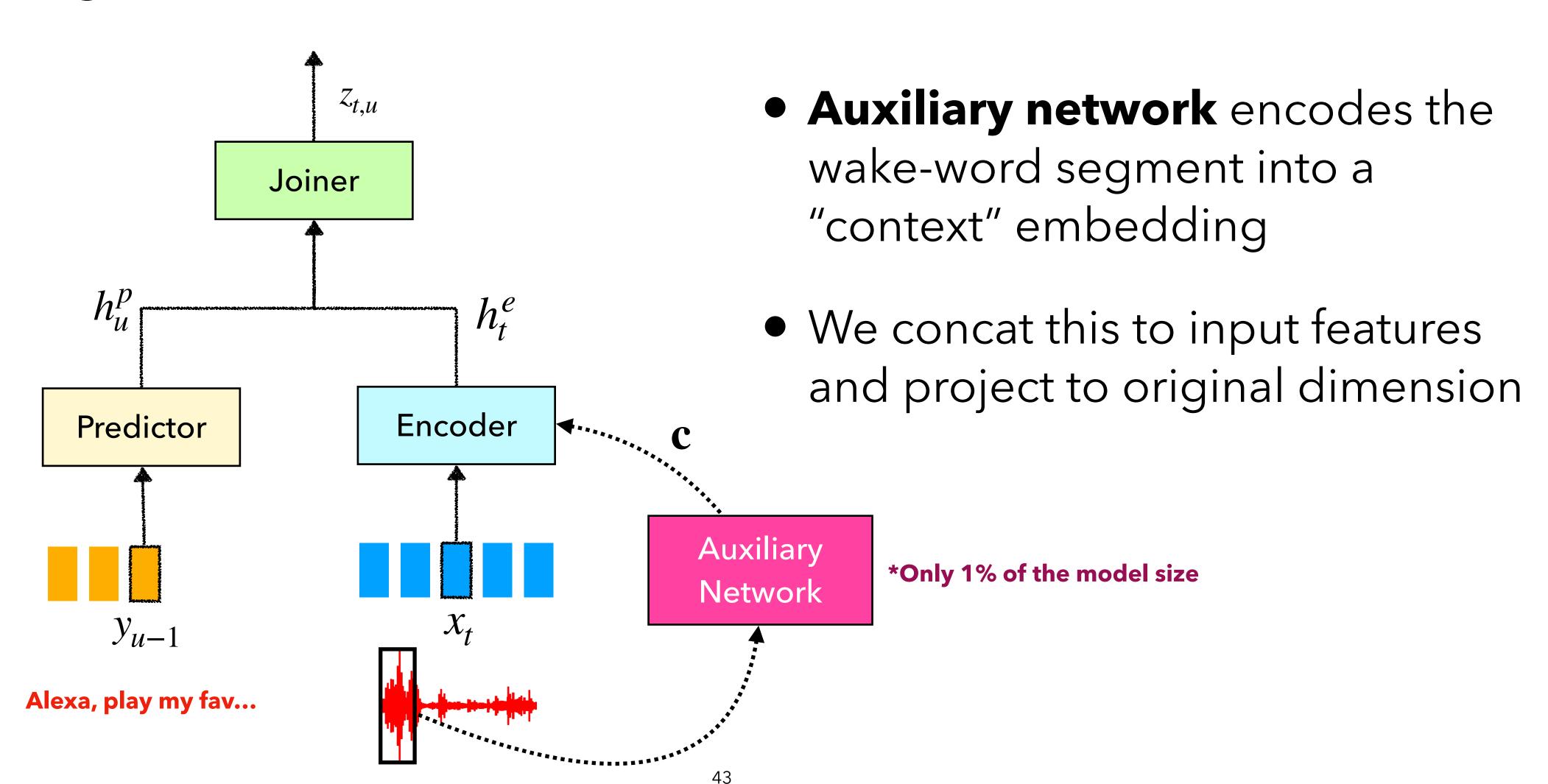
The basic ASR system: Neural transducer



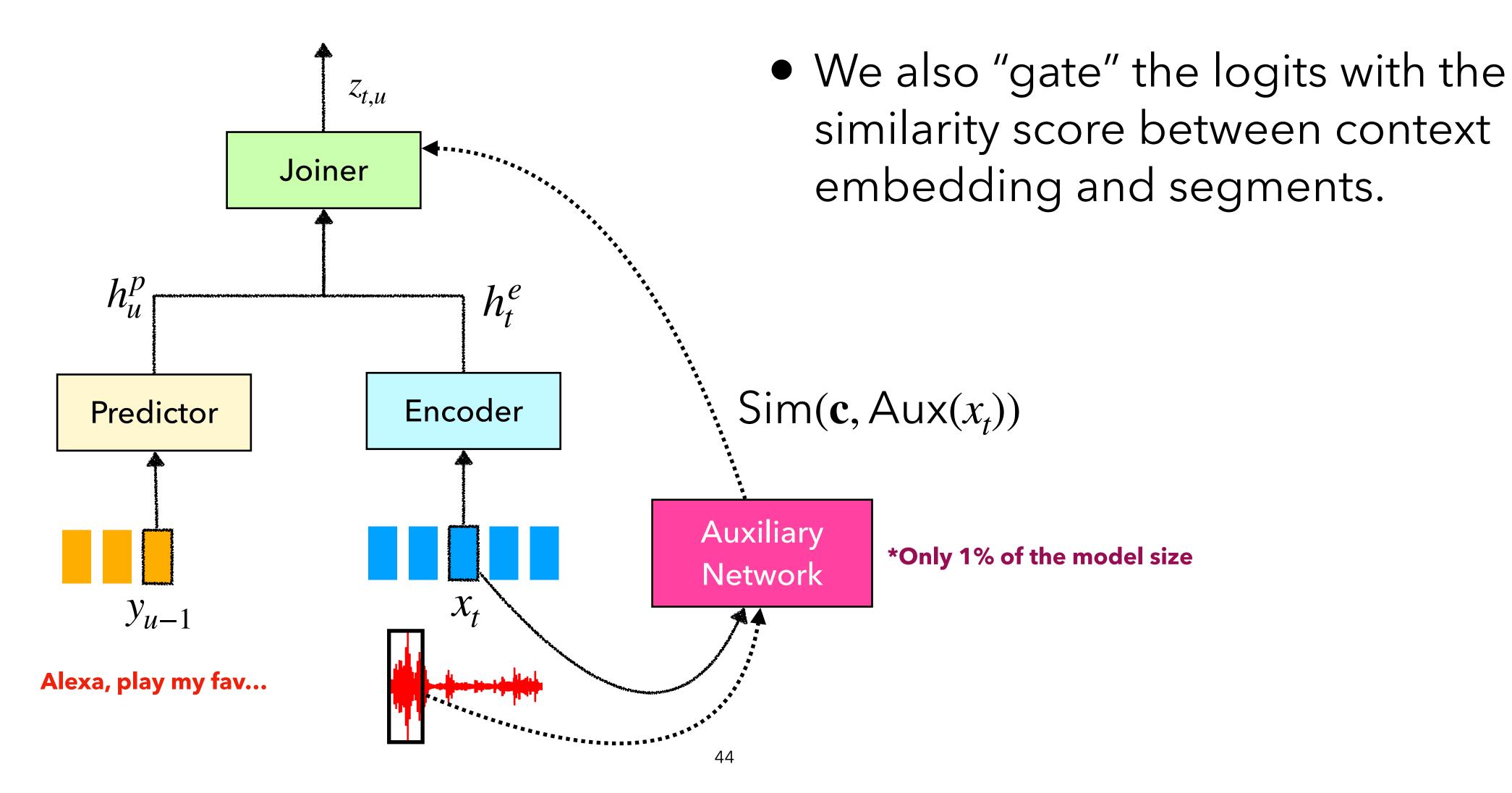
- **Encoder** converts input *audio* to high-dimensional representation
- **Predictor** is an autoregressive model that encodes input *text*
- Joiner combines audio and text representations to predict next token

1. Biasing the encoder with context



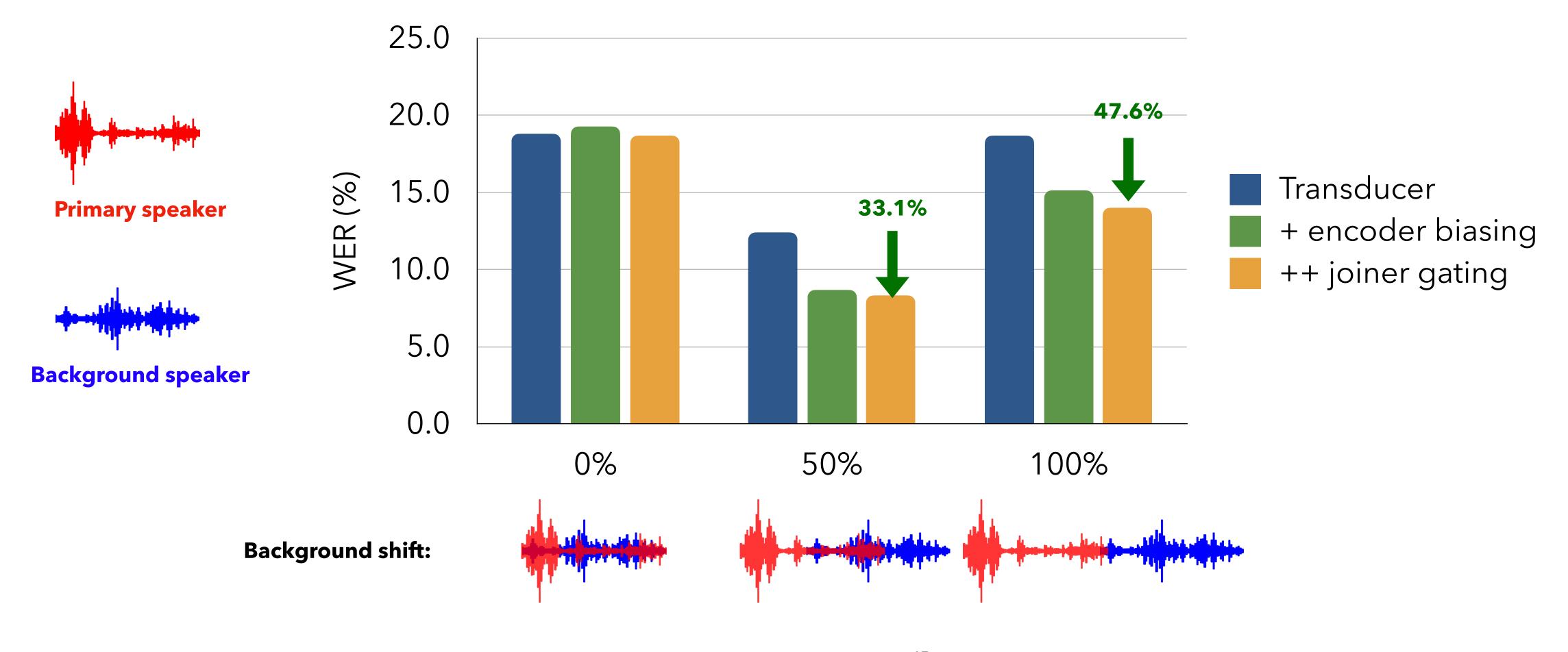


2. Gating the joiner



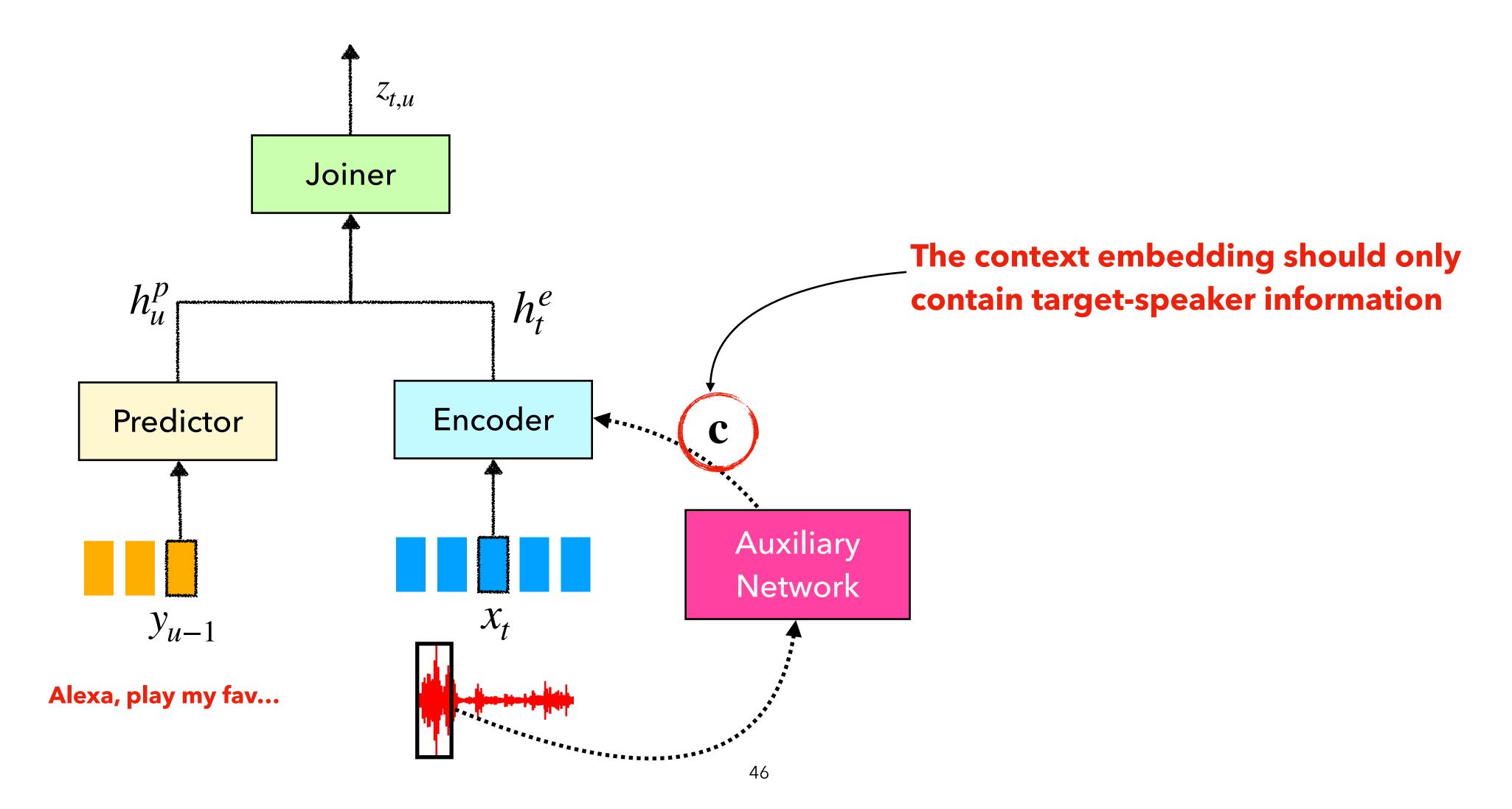
Effect of TS-ASR

WER on LibriSpeech mixtures (average over SNRs 1~20 dB)



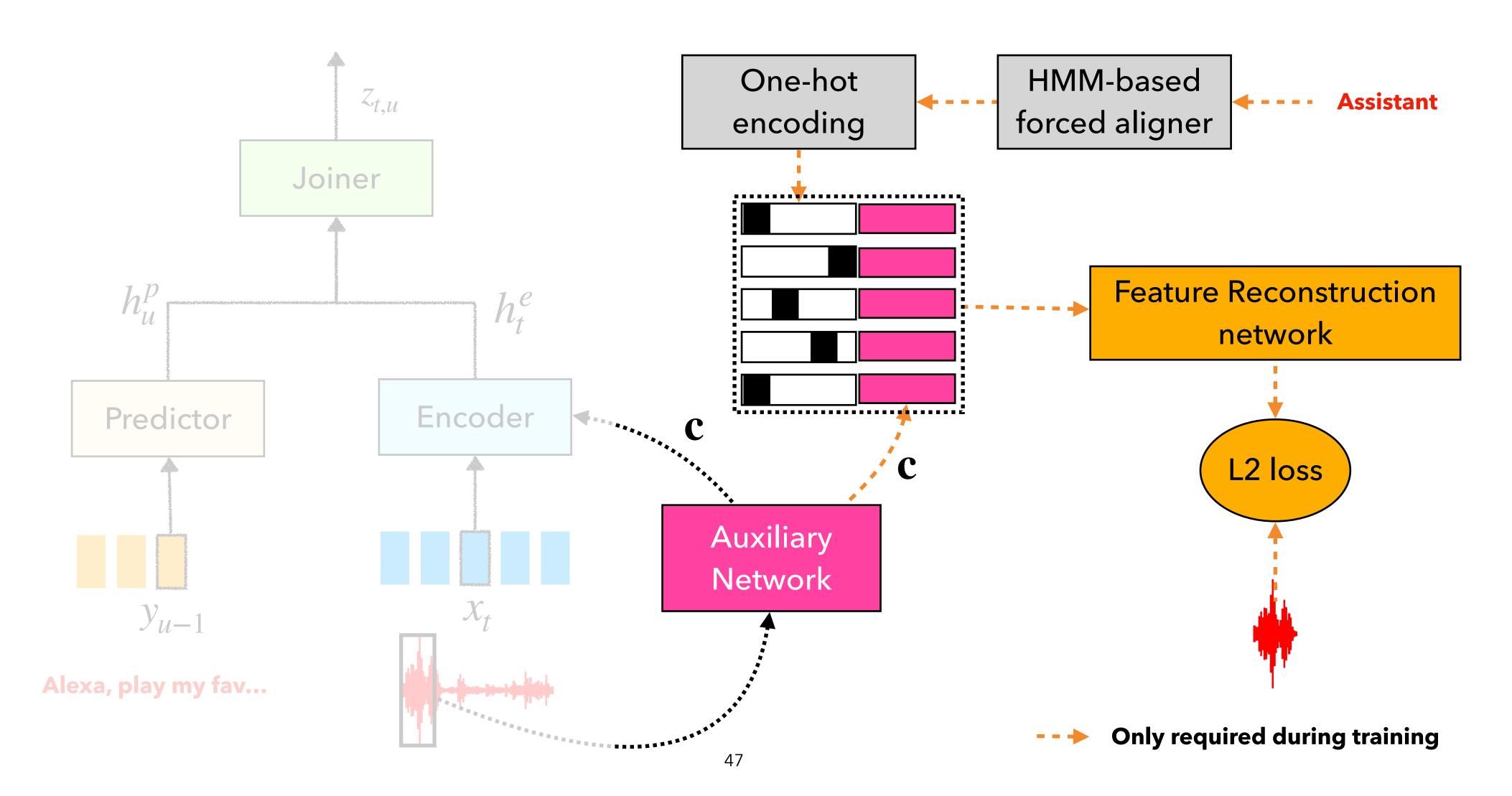
Let's think about the context embedding

We want to disentangle "style" from "content"



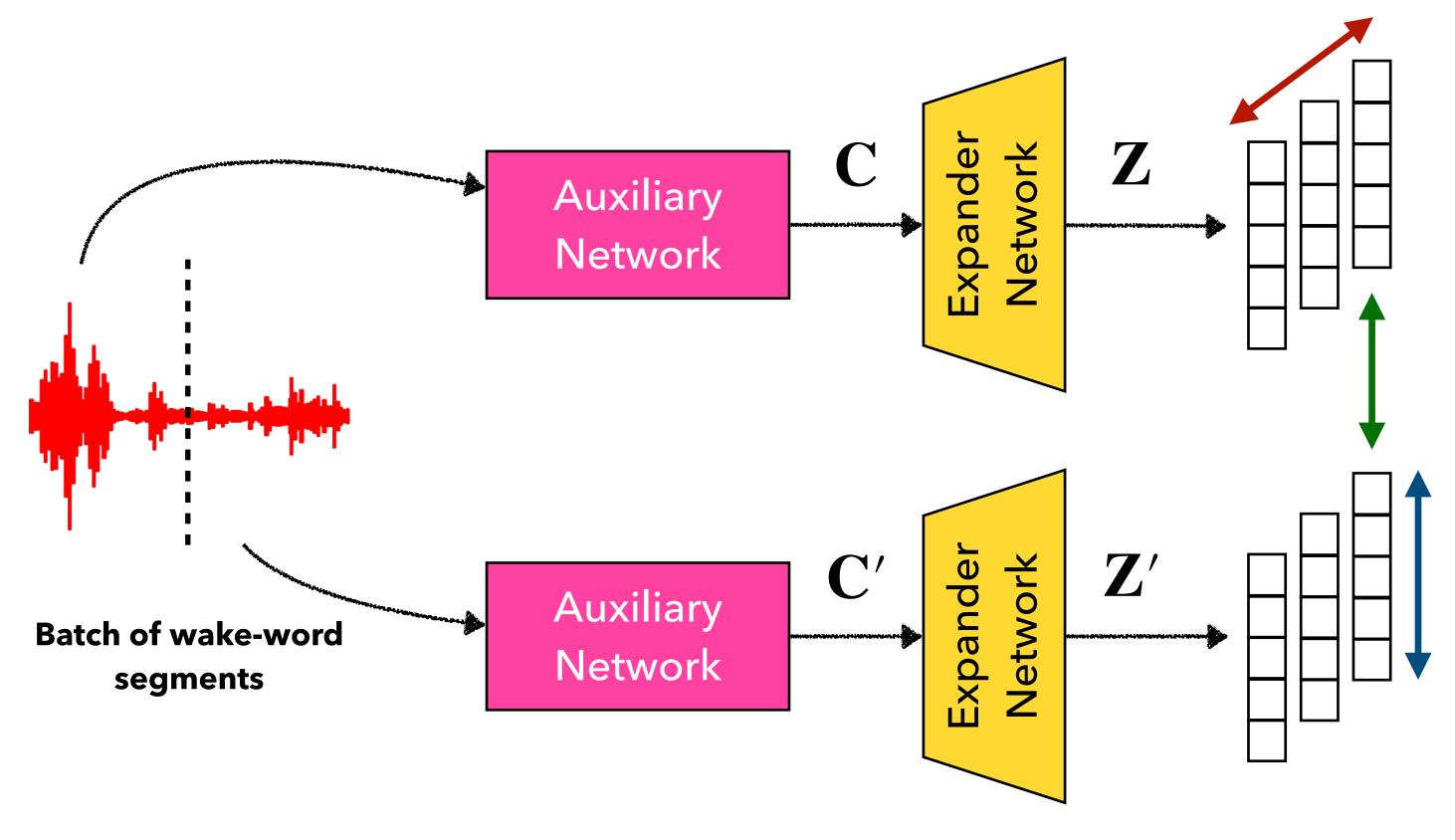
Disentangling "style" from "content"

Method 1: Feature Reconstruction



Disentangling "style" from "content"

Method 2: VIC Regularization



Variance prevents representations from collapsing to a constant

$$v(\mathbf{Z}) = \frac{1}{\mathfrak{D}} \sum_{j=1}^{\mathfrak{D}} \max \left(0, 1 - \sqrt{\operatorname{Var}(\mathbf{z}^j)} \right)$$

Invariance ensures that representations are similar for the two halves

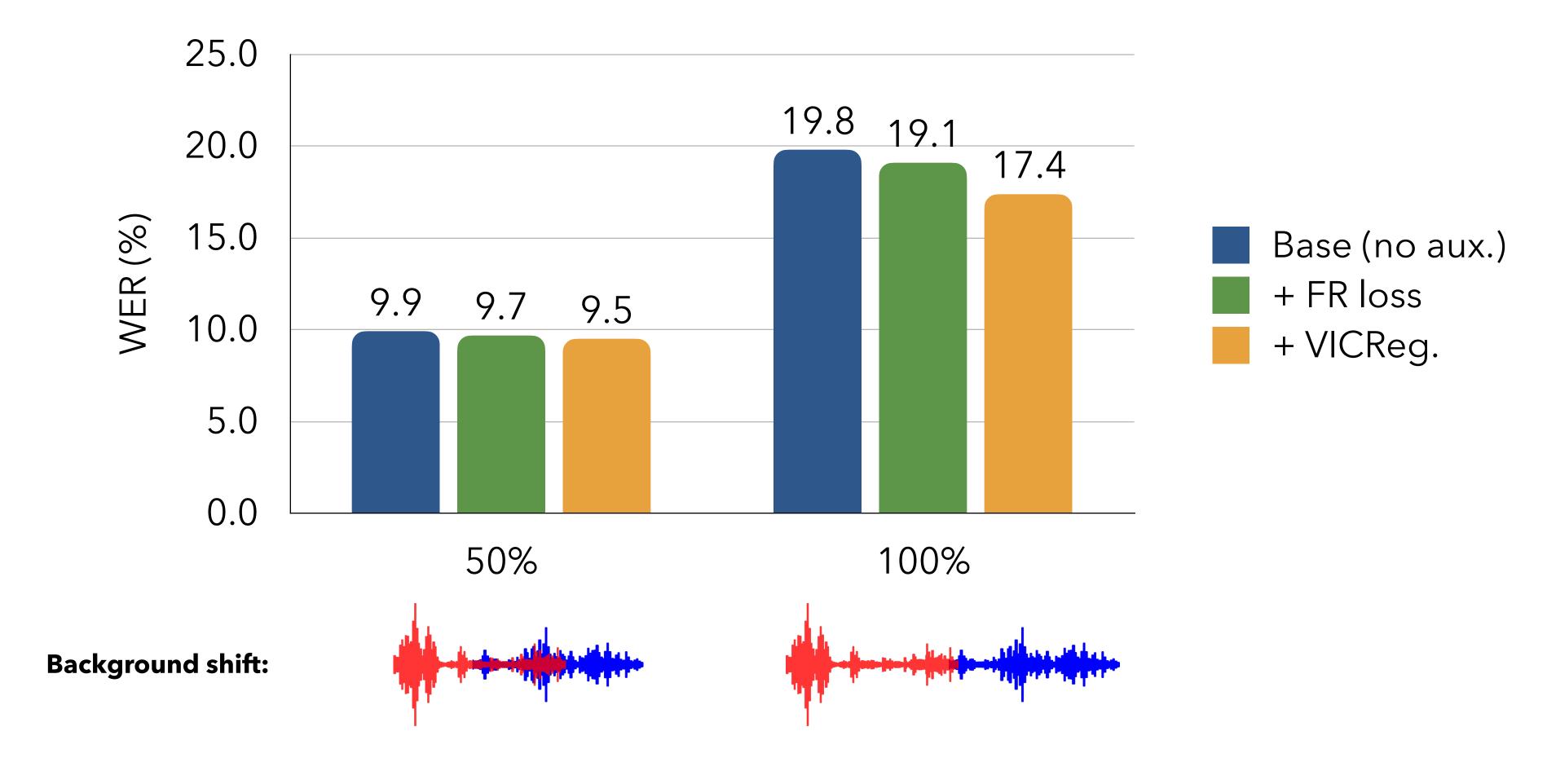
$$s(\mathbf{Z}, \mathbf{Z}') = \text{MSE}(\mathbf{Z}, \mathbf{Z}')$$

Covariance reduces correlation among dimensions to increase information content

$$c(\mathbf{Z}) = \frac{1}{\mathfrak{D}} \sum_{i \neq j} [\text{cov}(\mathbf{Z})]_{i,j}^2$$

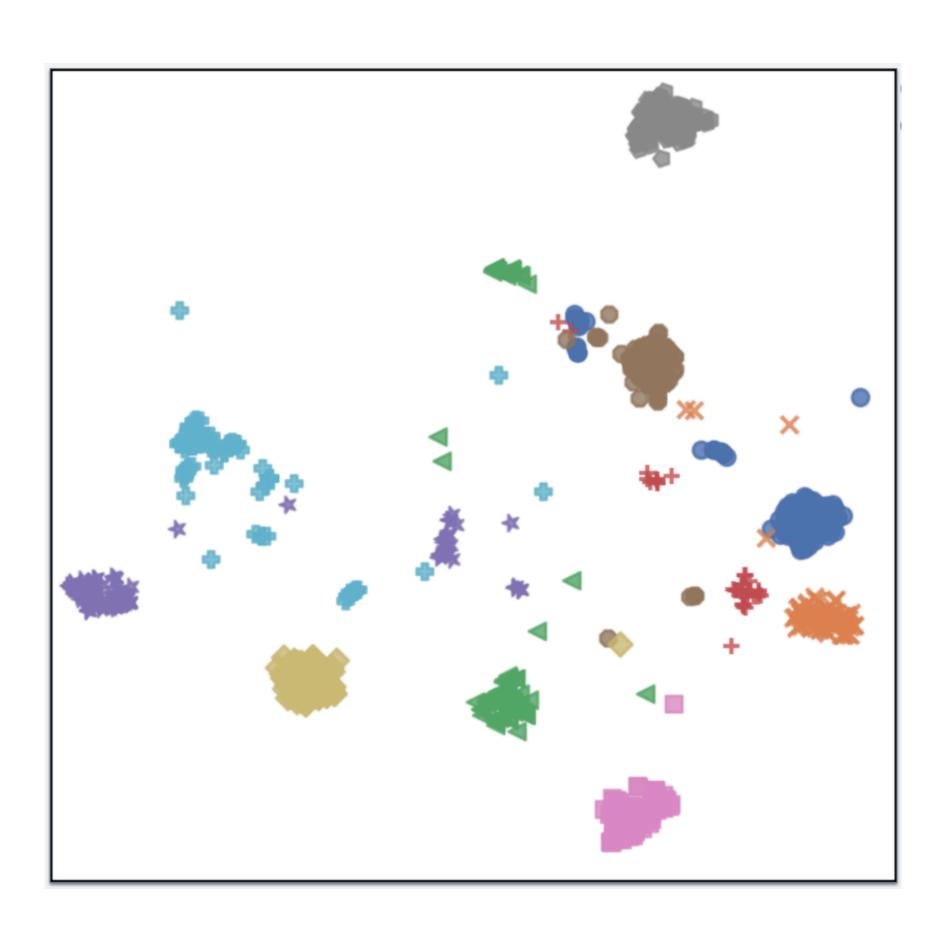
Effect of auxiliary objectives

WER on LibriSpeech mixtures (average over SNRs 1~10 dB)



Context embeddings capture speaker characteristics

T-SNE clustering of context embeddings



Target-speaker methods

Further reading

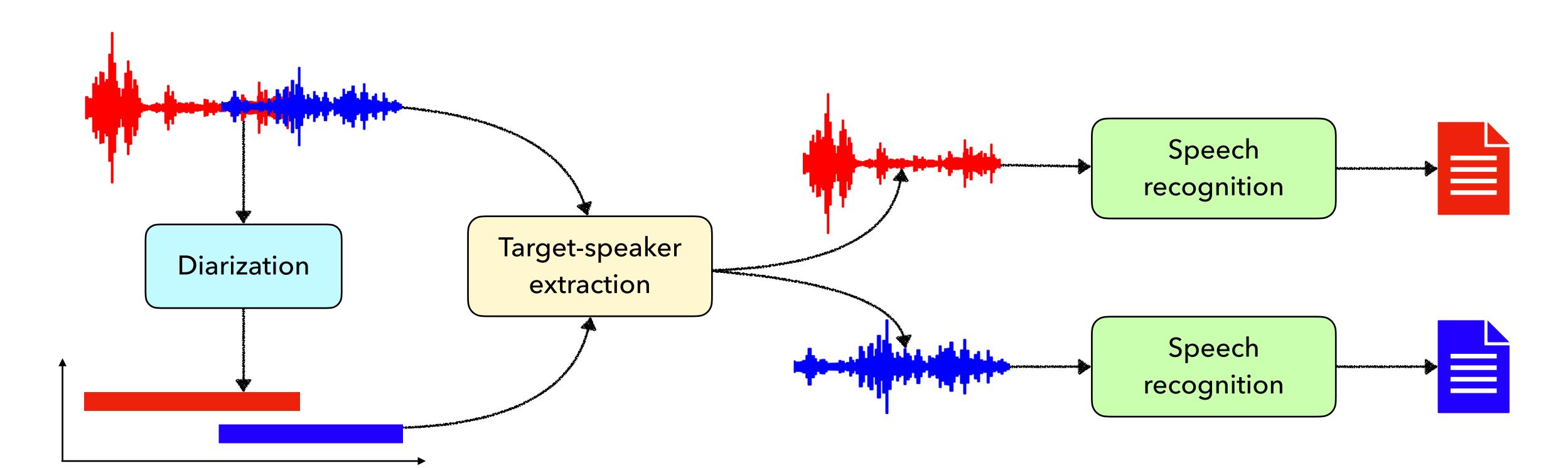
- 1. "Auxiliary loss function for target speech extraction and recognition with weak supervision based on speaker characteristics." K. Zmolikova, M. Delcroix, **D. Raj**, S. Watanabe, J. Černocký. *InterSpeech* 2021.
- 2. "Adapting self-supervised models to multi-talker speech recognition using speaker embeddings." Z. Huang, **D. Raj**, P. Garcia, S. Khudanpur. *IEEE ICASSP 2023*.

End-to-end Multi-talker ASR

Motivation

The problem with modular systems

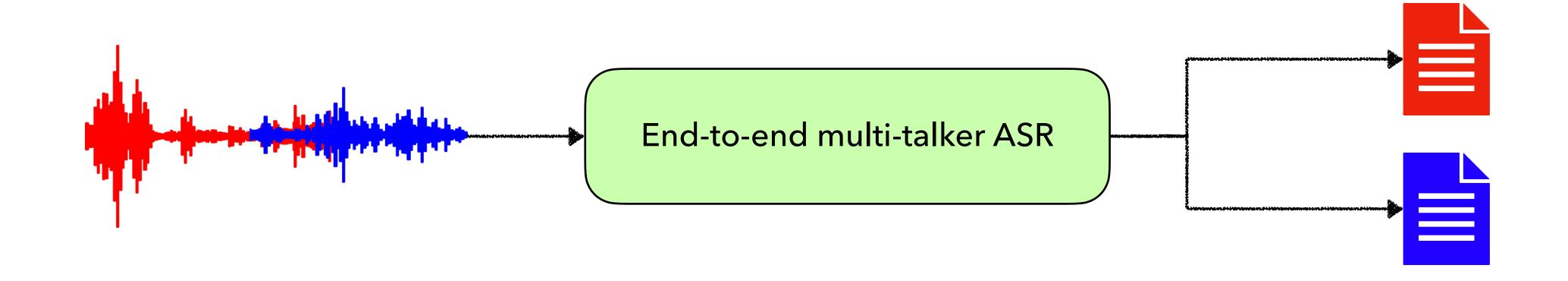
- Modules are independently optimized
- Higher accumulated latency
- Requires engineering efforts to maintain



Motivation

Towards end-to-end multi-talker ASR

- Optimized for end objective
- Single model –> Lower latency
- Easy to maintain and extend



Multi-talker ASR

Streaming Unmixing and Recognition Transducers (SURT)

CONTINUOUS STREAMING MULTI-TALKER ASR WITH DUAL-PATH TRANSDUCERS

Desh Raj*1, Liang Lu2, Zhuo Chen2, Yashesh Gaur2, Jinyu Li2

¹Center for Language and Speech Processing, Johns Hopkins University, USA, ²Microsoft Corp., USA

Published at

SURT 2.0: Advances in Transducer-based Multi-talker Speech Recognition

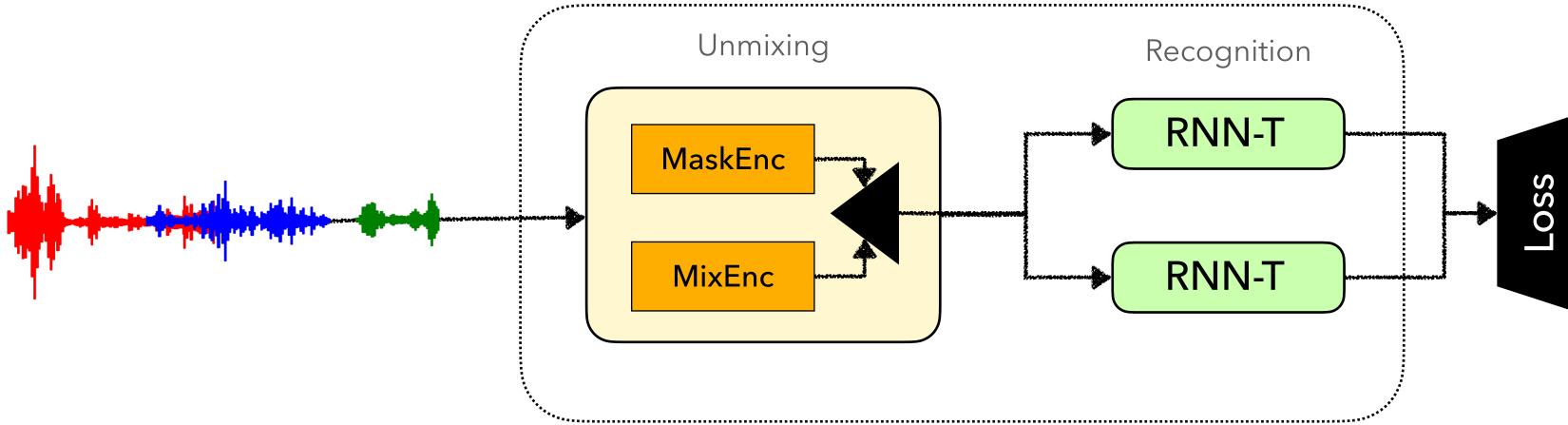
Desh Raj, Student Member, IEEE, Daniel Povey, Fellow, IEEE, and Sanjeev Khudanpur, Member, IEEE

Under review at

EEE TASLP

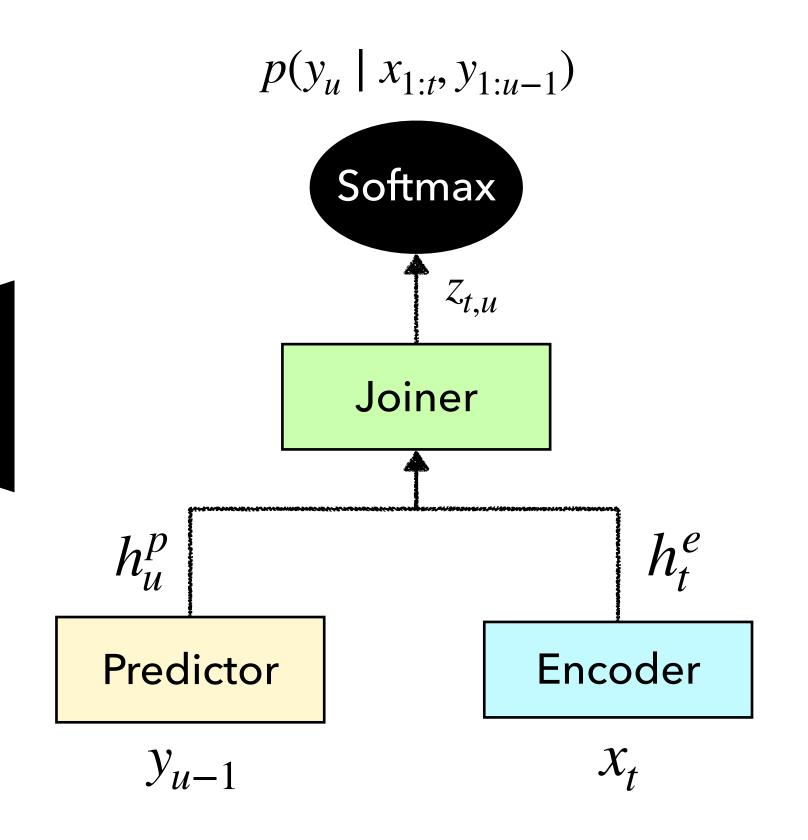
The original SURT

Basics



- Unmixing part separates mixed speech into non-overlapping features
- Made of convolutional layers

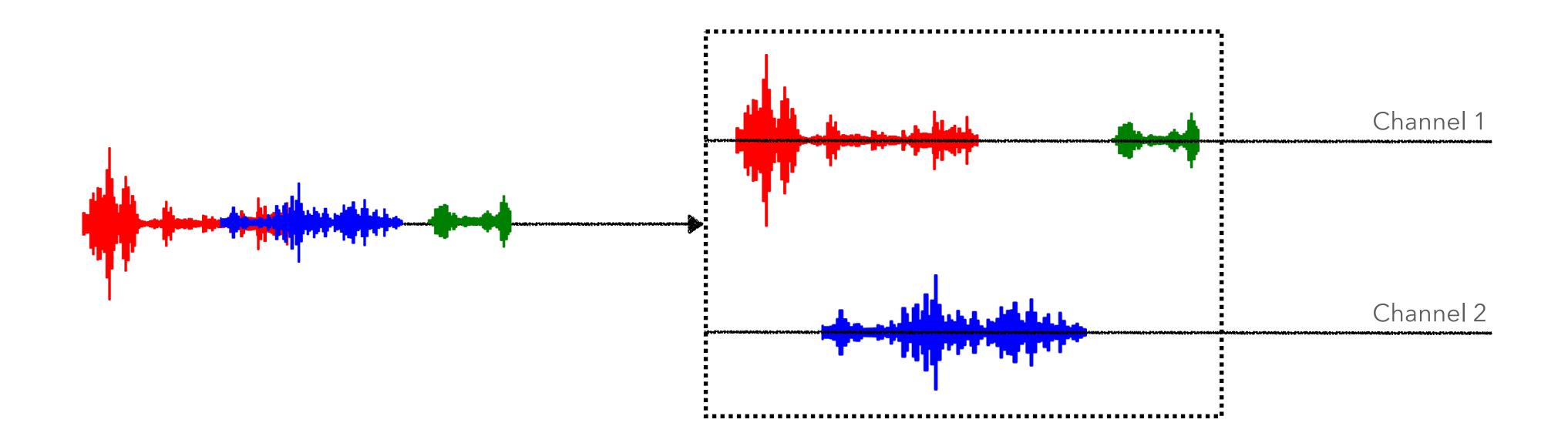
- Transducer model is used as the recognizer
- Output of unmixing component is fed into encoder
- Use HEAT loss over the transducer loss



SURT objective function

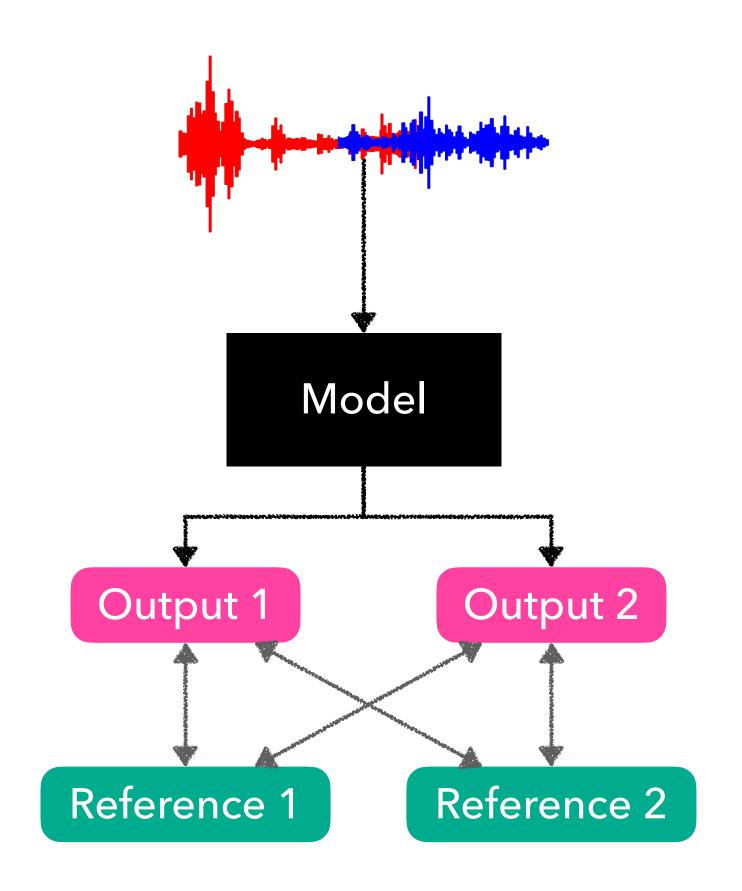
Heuristic error assignment training (HEAT)

Assign utterances to output channels in order of start time.

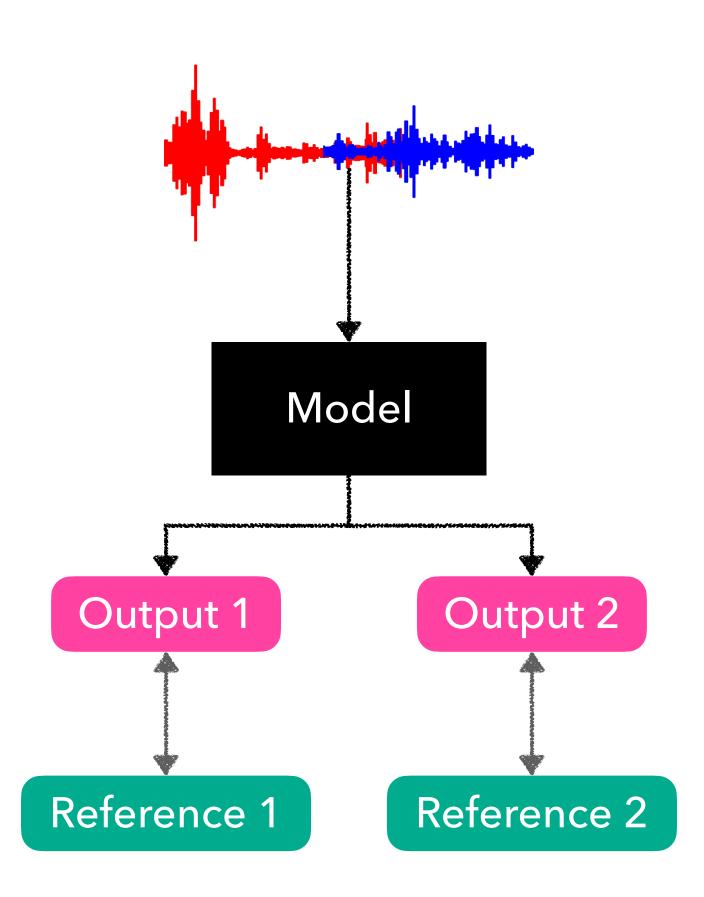


SURT objective function

HEAT vs. PIT



Permutation invariant training (PIT)



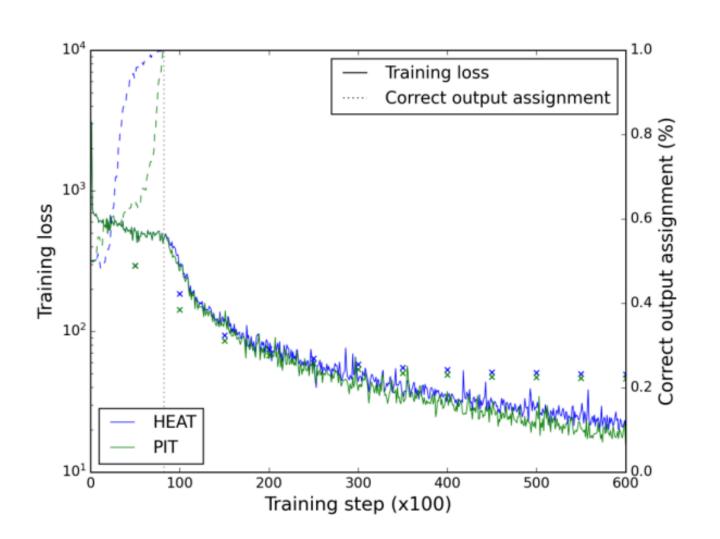
Heuristic error assignment training (HEAT)

SURT objective function HEAT vs. PIT

Permutation invariant training (PIT)

Requires computing all permutations of outputs and references

Can be prohibitively slow when N >> 2 (exponential in N)



Heuristic error assignment training (HEAT)

Requires computing only 1 permutation of output and reference

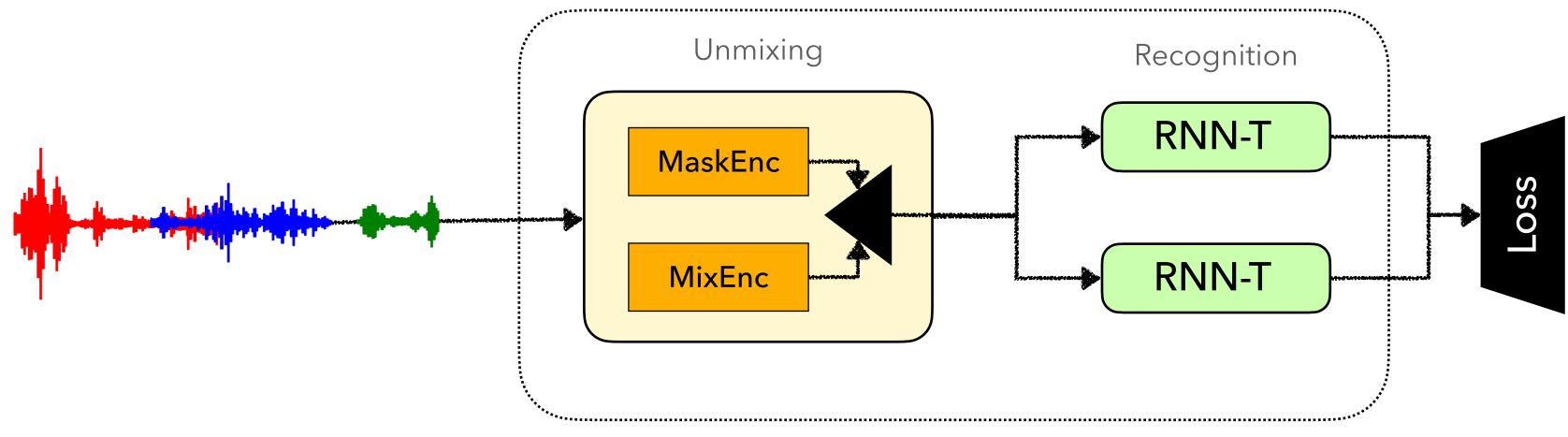
Complexity increases linearly with N

For utterances with non-zero delay, PIT learns the same heuristic as HEAT

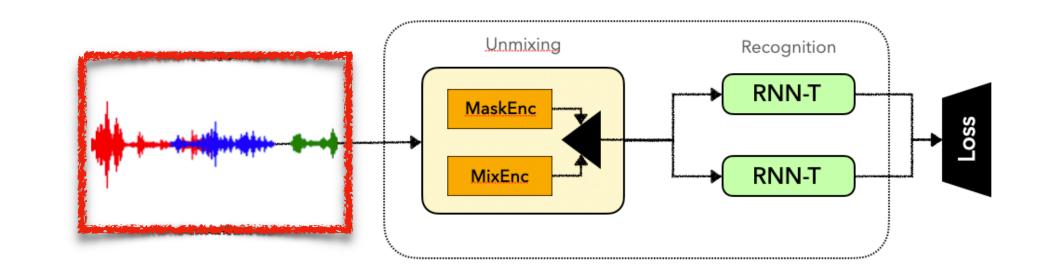
The original SURT

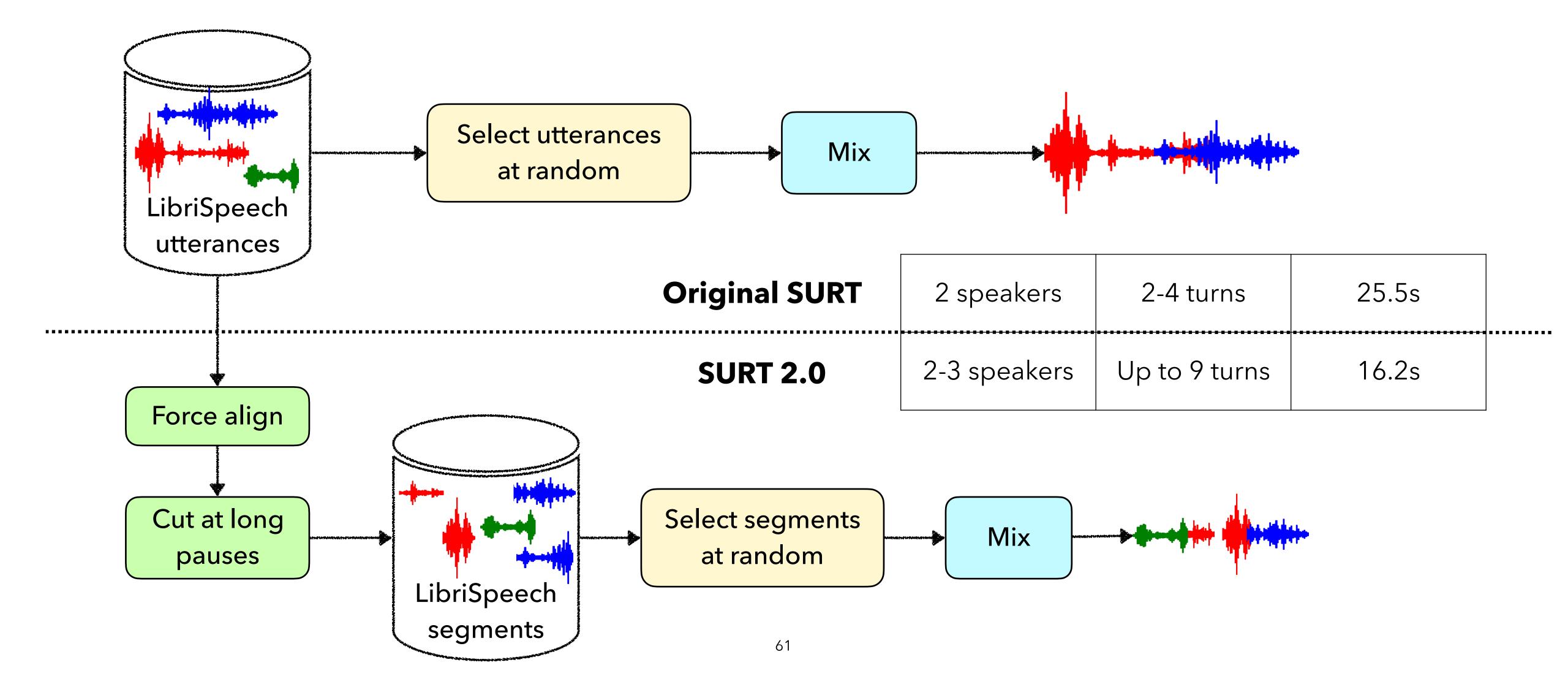
Problems

- 1. Infeasible to train on an academic cluster.
- 2. Suffers from omission and leakage errors.
- 3. How to make it work on real meetings?



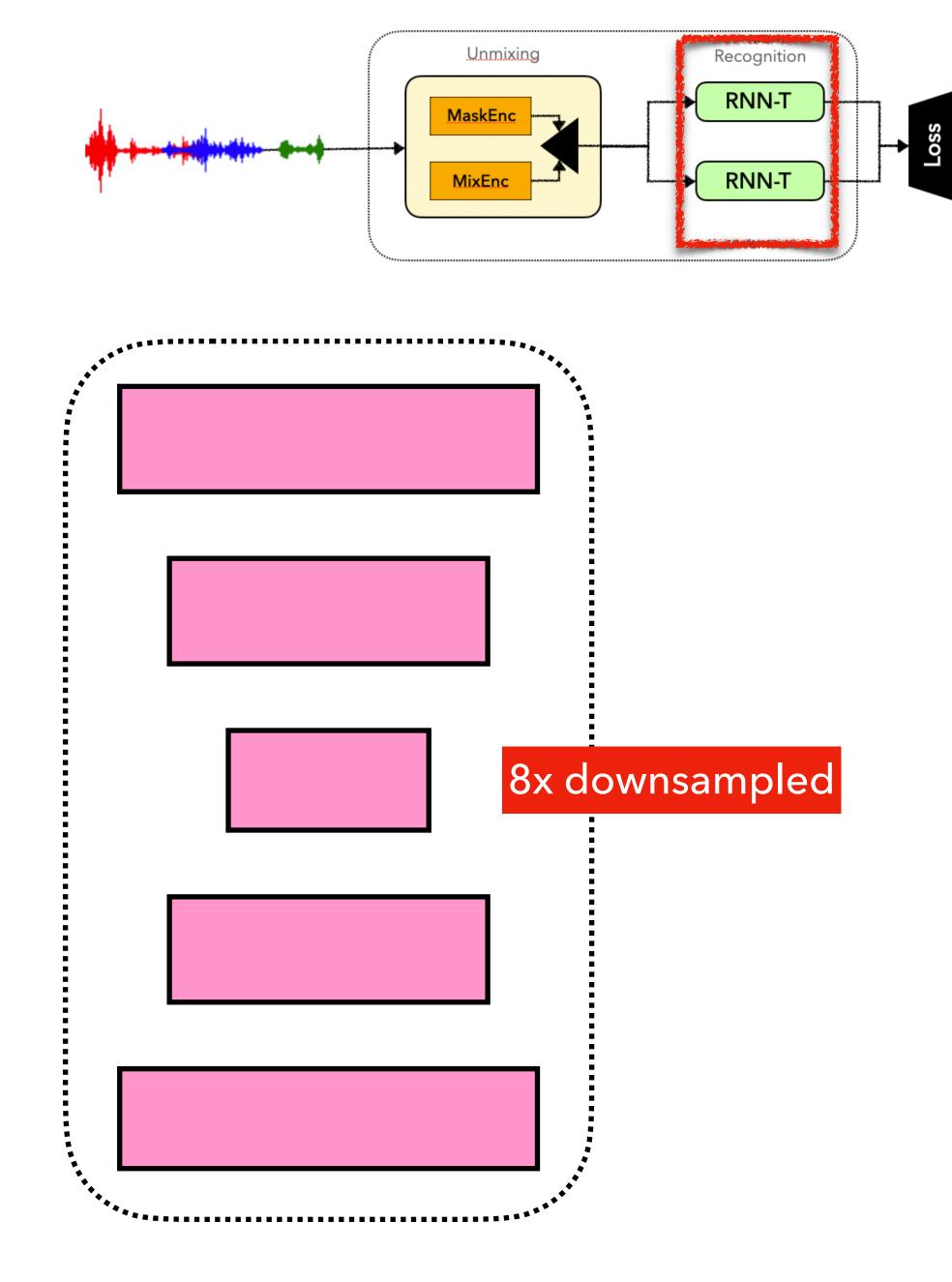
#1: Shorter training mixtures





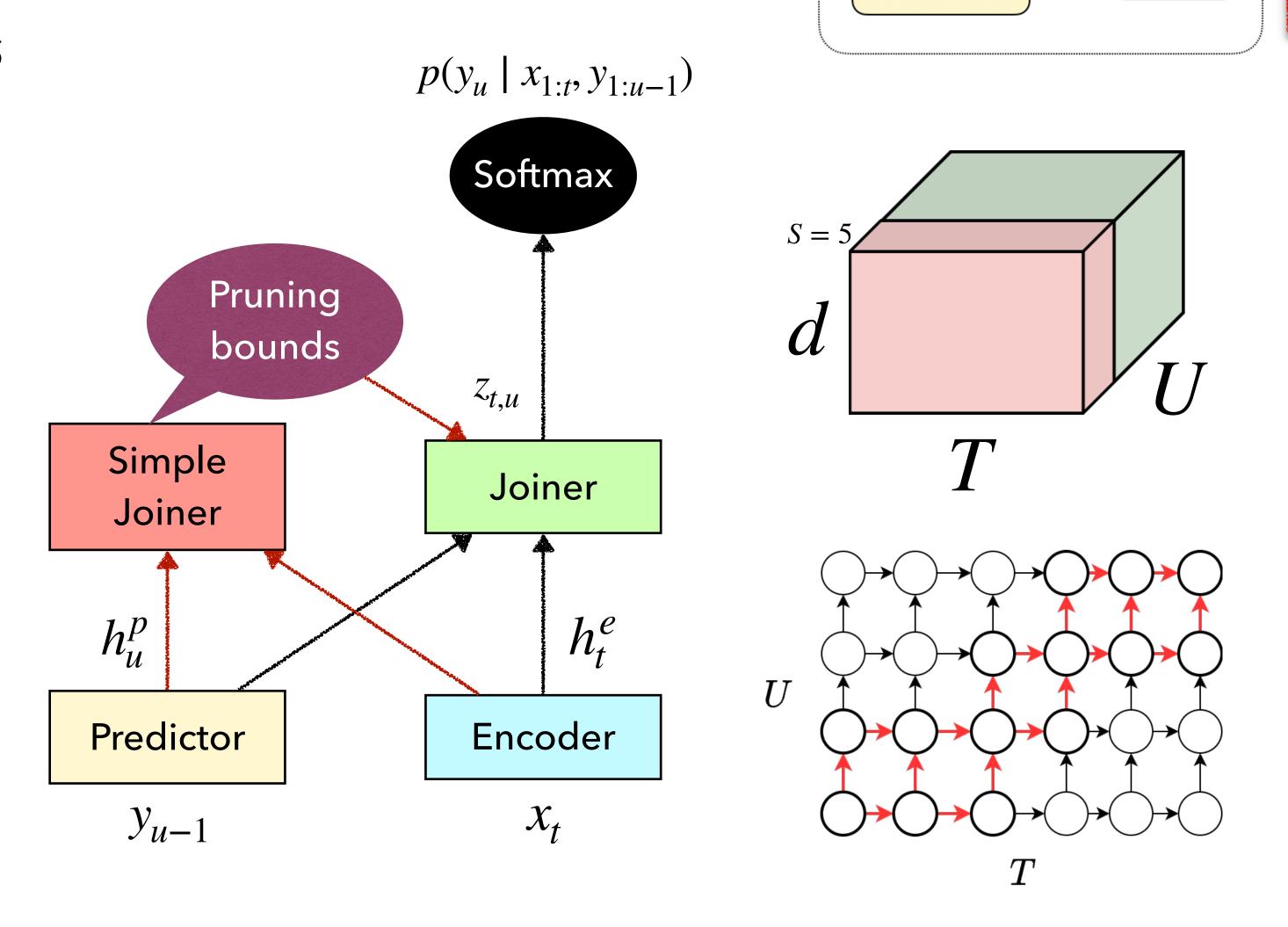
#2: Zipformer encoder

- 1. Subsampling in intermediate layers
- 2. Shared self-attention weights in each zipformer "block"
- 3. Other things (e.g., ScaledAdam)



#3: Pruned transducer loss

- 1. Compute pruning range using a "simple" joiner
- 2. Compute full loss on pruned alignments



Recognition

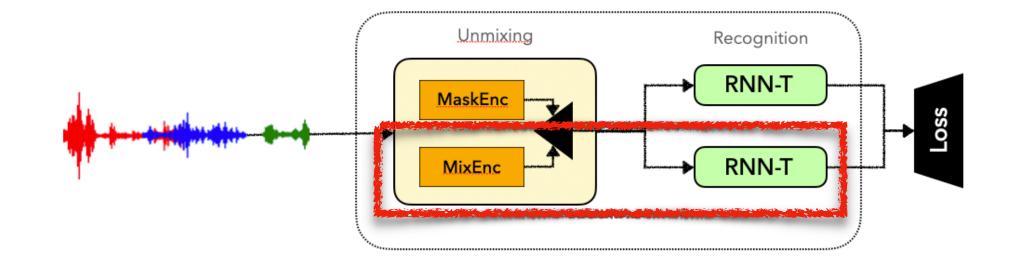
RNN-T

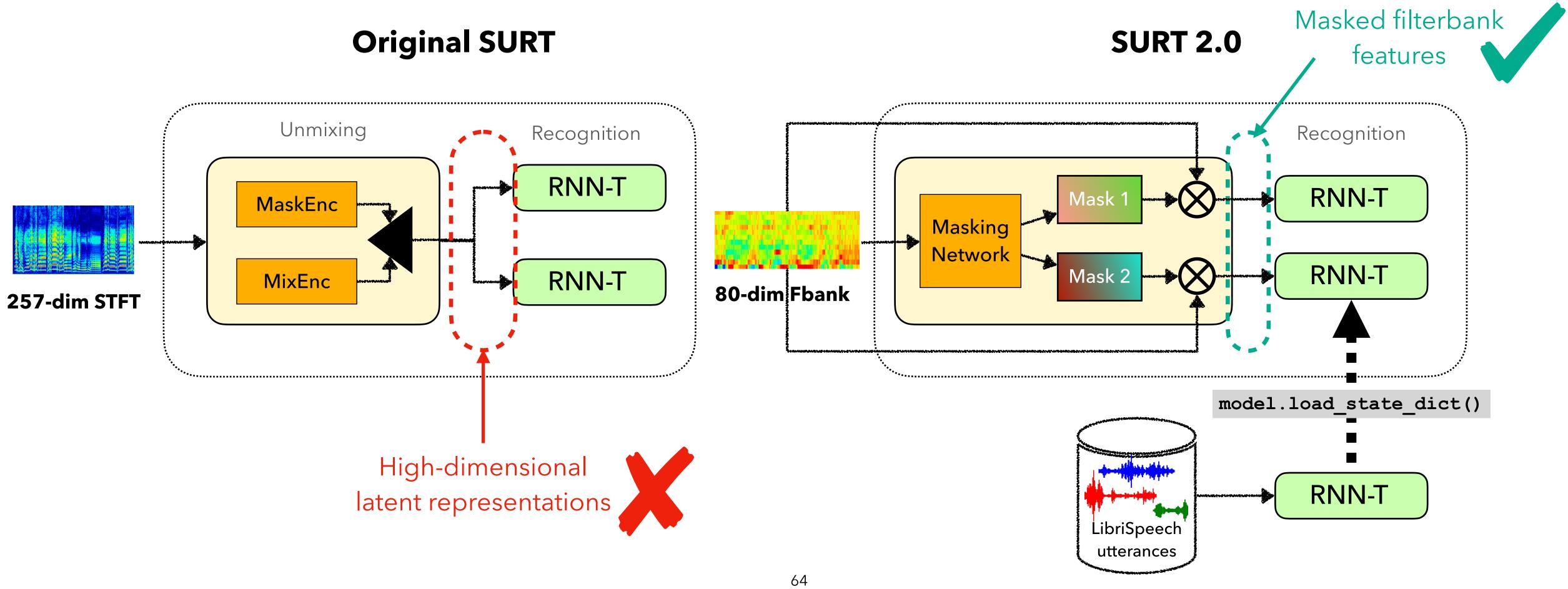
RNN-T

Unmixing

Kuang, F., Guo, L., Kang, W., Lin, L., Luo, M., Yao, Z., & Povey, D. Pruned RNN-T for fast, memory-efficient ASR training. *Interspeech 2022*.

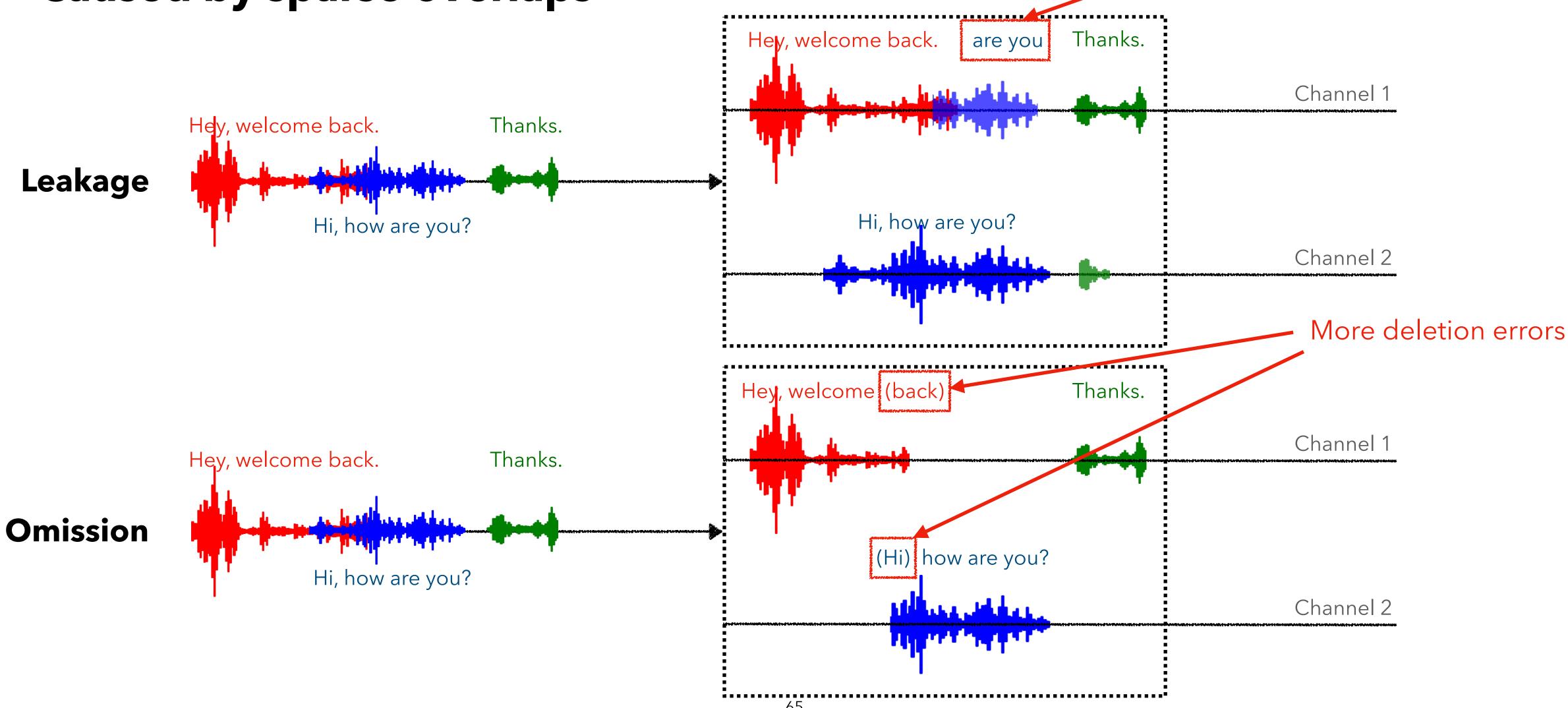
#4: Single-speaker pre-training





Leakage and omission errors

Caused by sparse overlaps

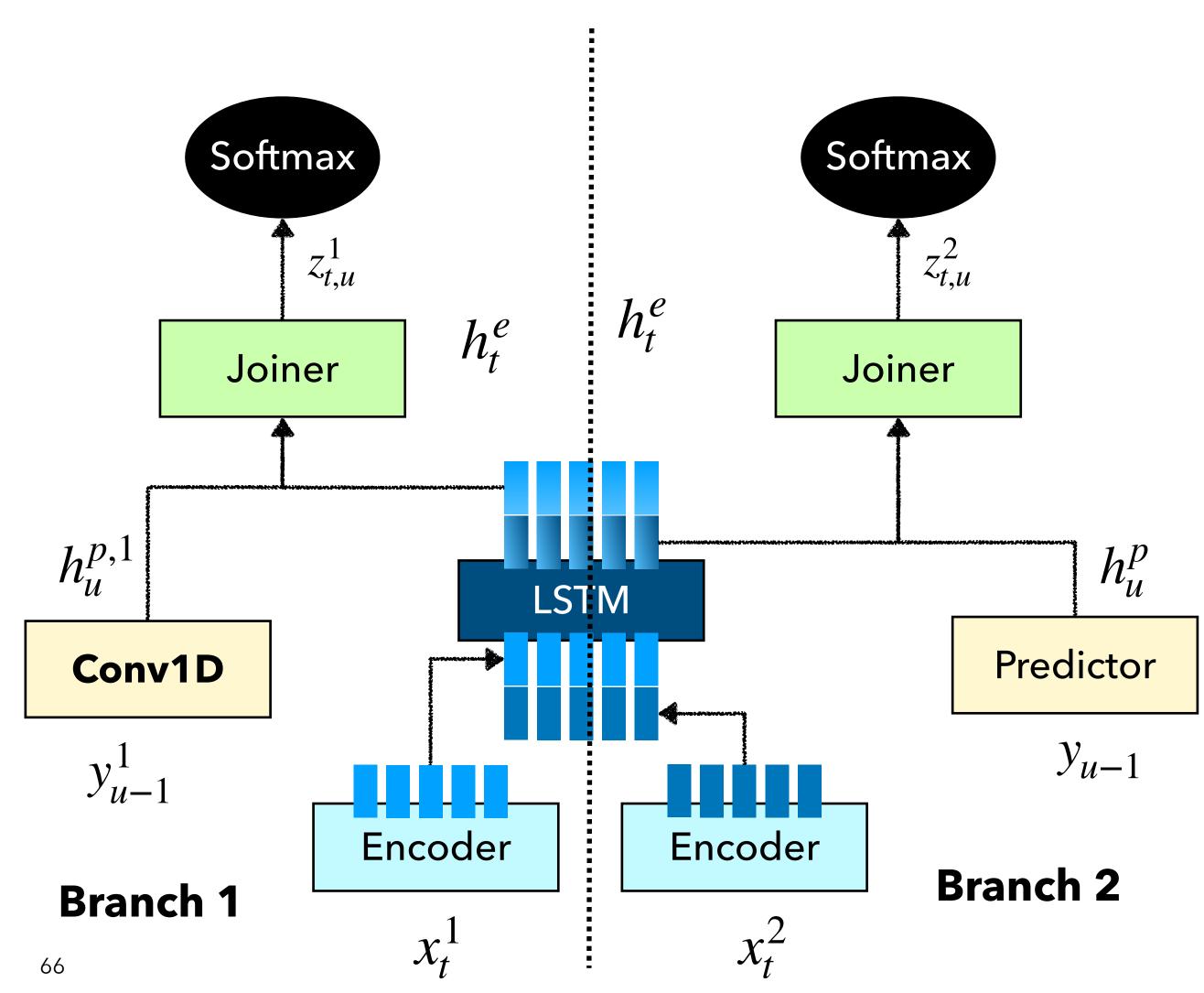


More insertion errors

Leakage and omission errors

#1: DP-LSTM, branch tying, stateless decoder

- 1. Use **dual-path LSTM** instead of Conv2D in masking network
- 2. Encoder branches are "tied" at the output
- 3. "Stateless" decoder to improve short turn-taking

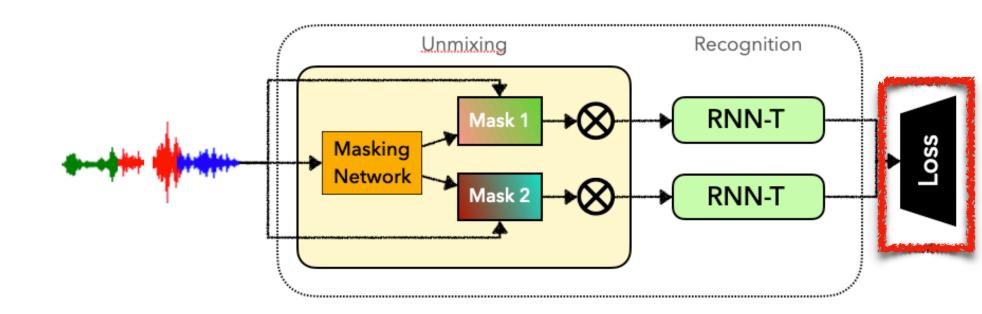


RNN-T

RNN-1

Leakage and omission errors

#2: Masking loss and encoder CTC loss



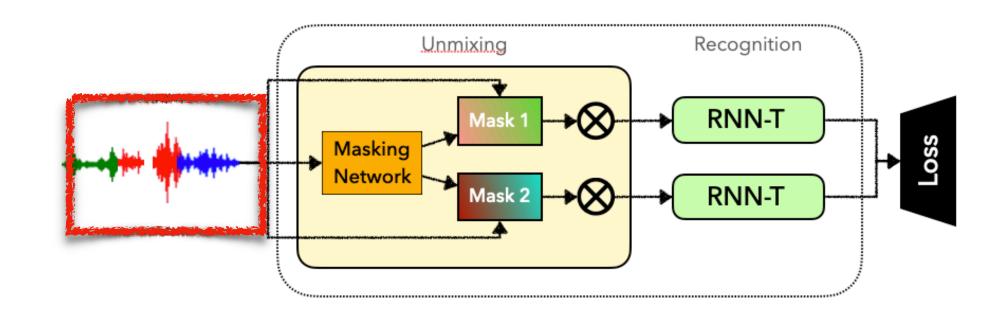
We use 2 auxiliary loss functions:

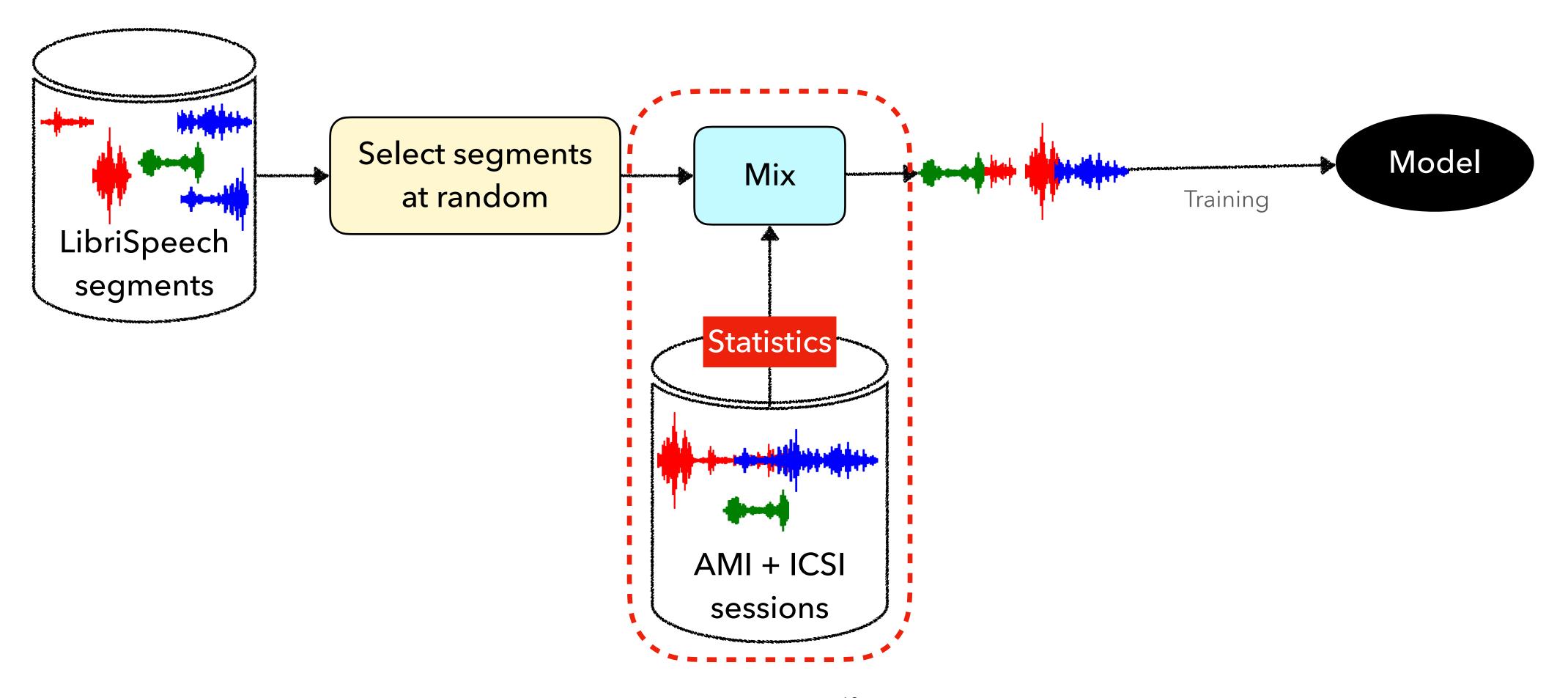
- 1. CTC loss at the output of the encoder (for better alignment)
- 2. MSE loss on the masked filterbanks (for better separation)

$$\mathcal{L} = \mathcal{L}'_{\text{rnnt}} + \lambda_{\text{ctc}} \mathcal{L}_{\text{ctc}} + \lambda_{\text{mask}} \mathcal{L}_{\text{mask}}$$

Performance on real meetings

#1: Simulation using real meeting statistics

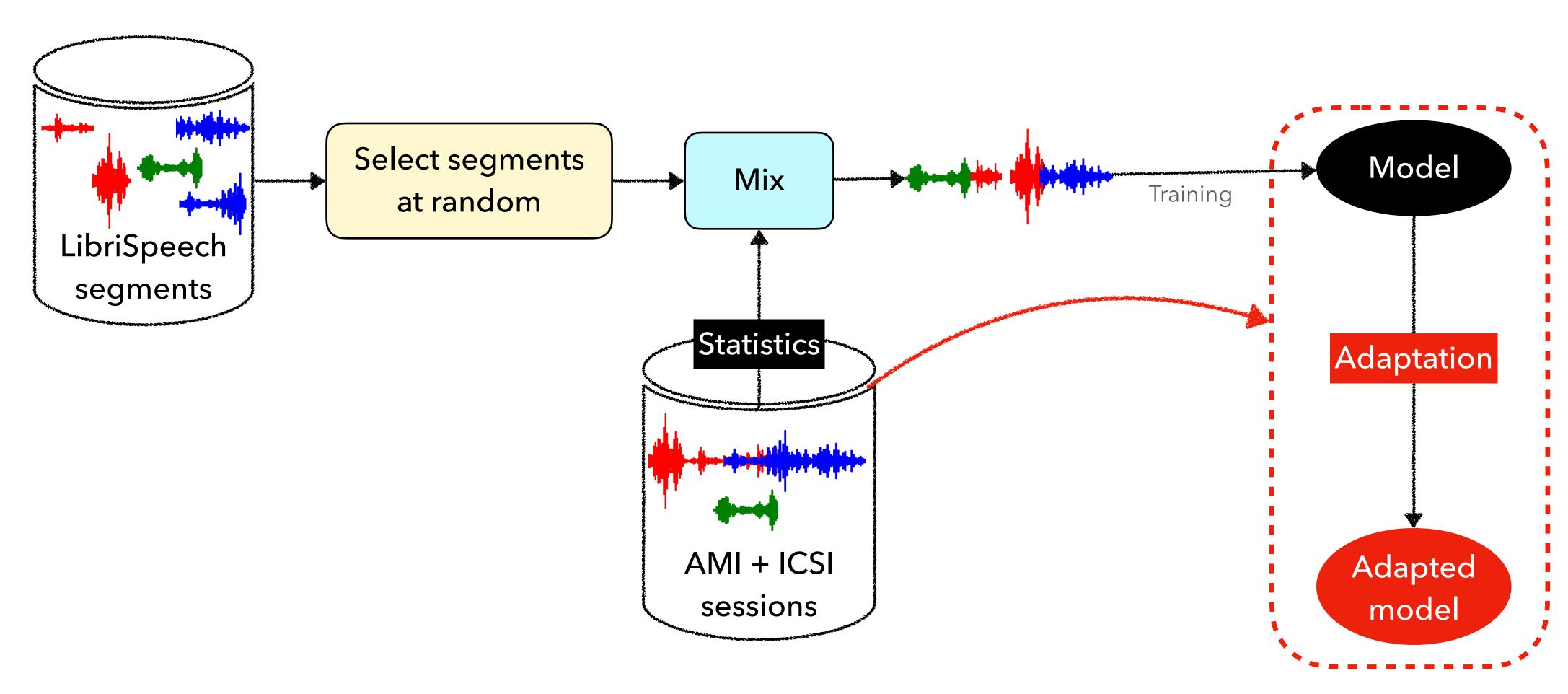




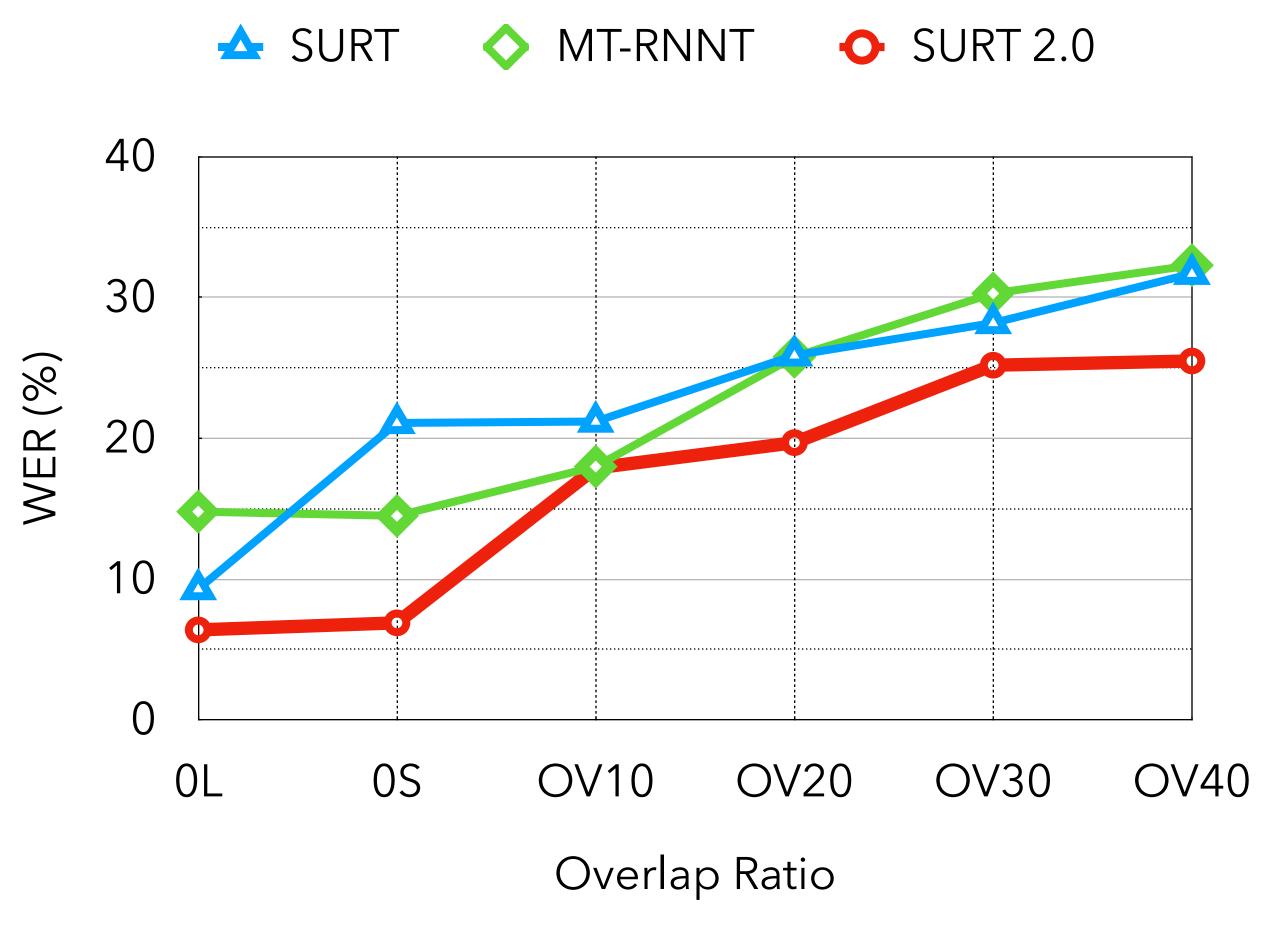
Performance on real meetings

Unmixing Recognition RNN-T Masking Network Mask 2 RNN-T

#2: Domain adaptation



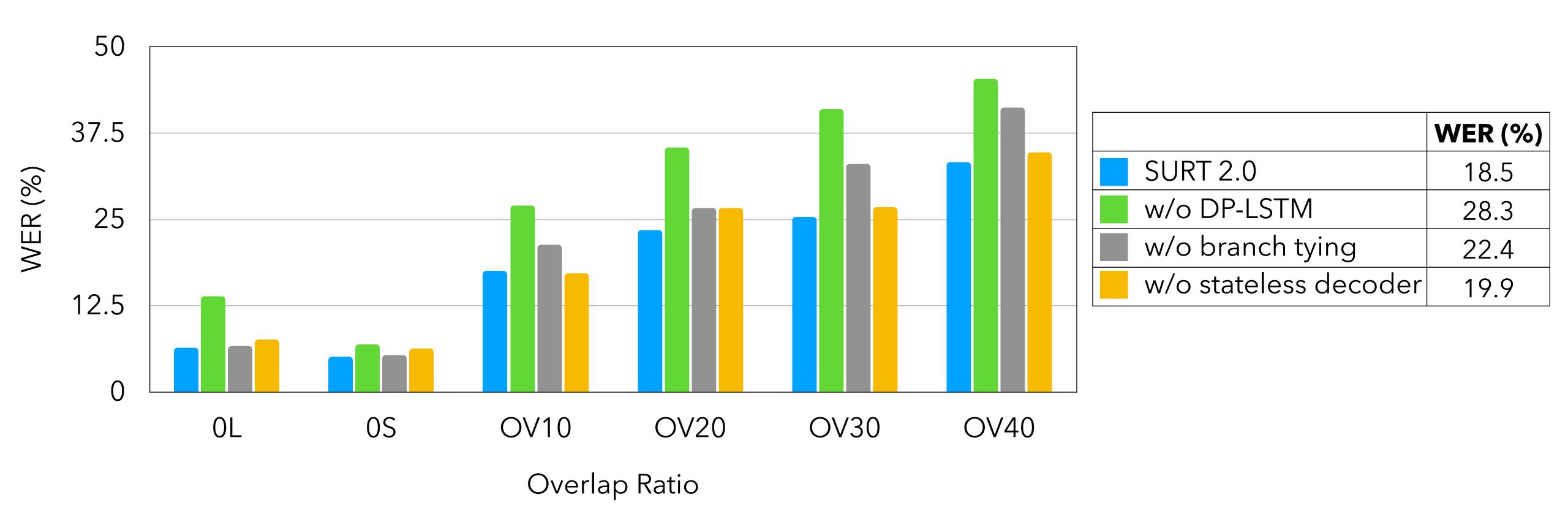
#1: SURT 2.0 outperforms original SURT



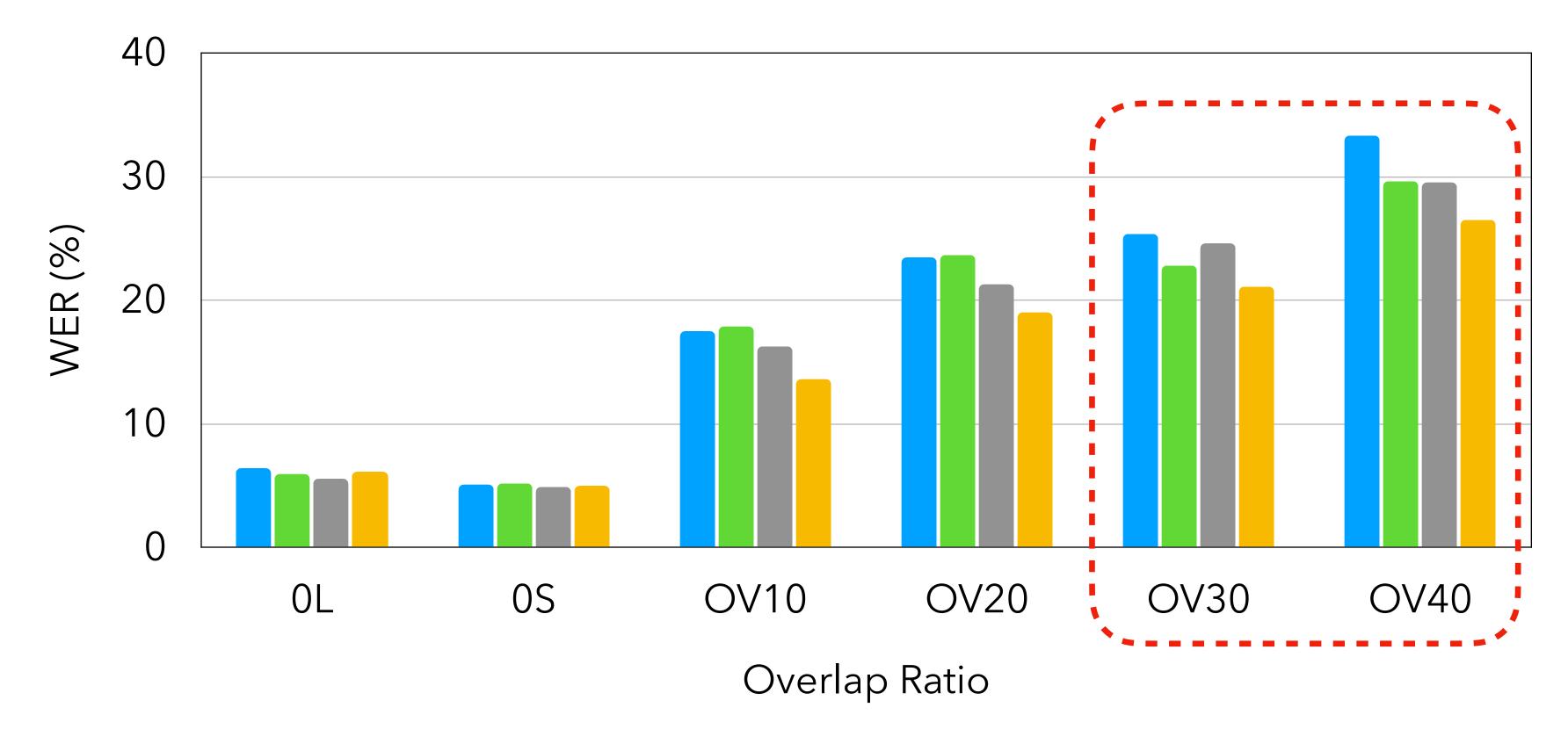
Model	# params (M)	WER (%)	
SURT	42.9	22.9	16 x V10
MT-RNNT	81.0	22.6	
SURT 2.0	37.9	16.9	4 x V10

#2: Effect of architectural changes

Most improvement comes from using DP-LSTM in masking network.

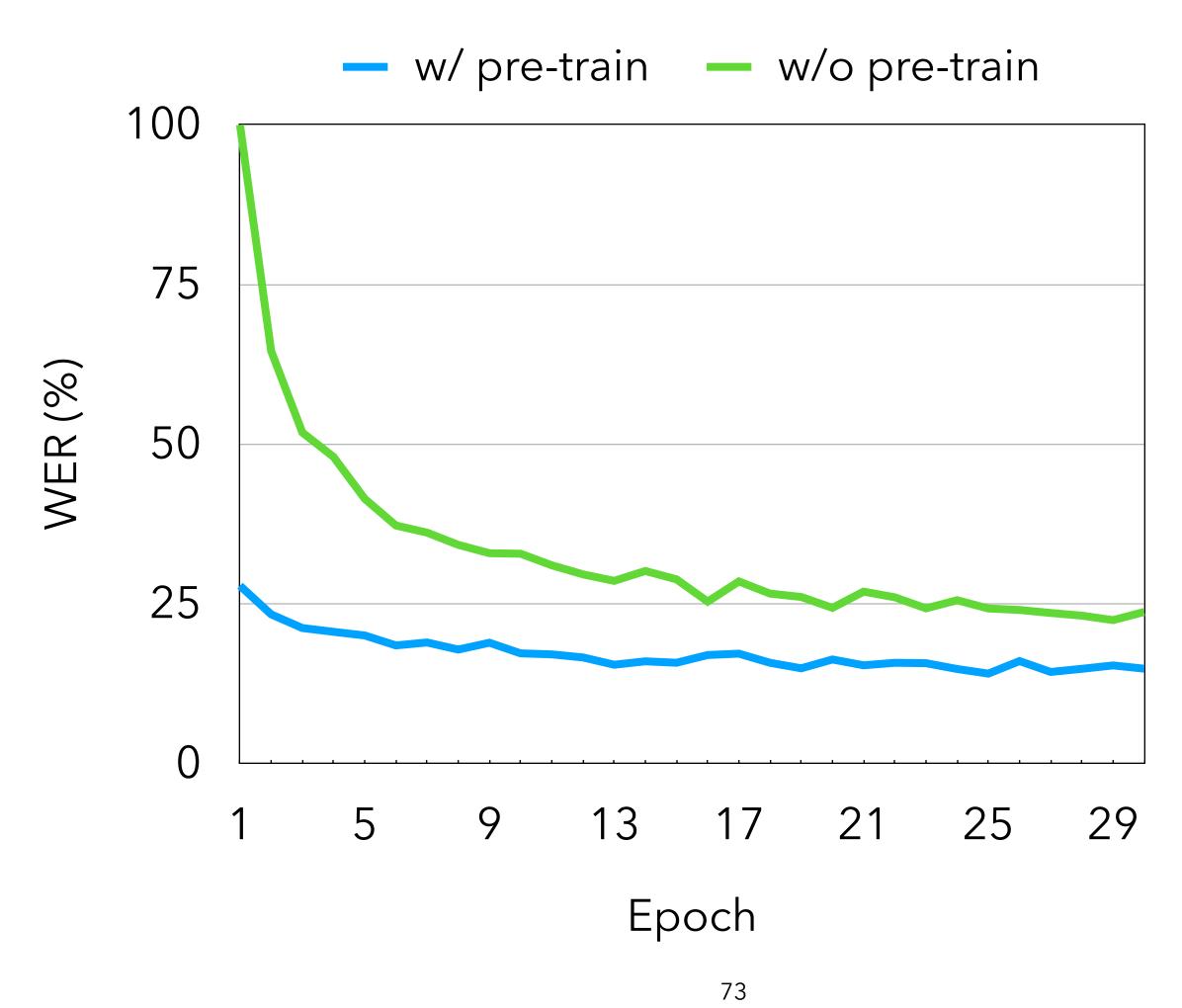


#3: Effect of auxiliary objectives



	WER (%)
No aux. loss	18.5
+ CTC loss	17.5
+ Mask loss	17.1
+ CTC + Mask	15.2

#4: Single speaker pre-training is critical



Results on real meetings AMI and ICSI

AMI

	IHM-Mix	SDM	MDM (beamform)
SURT 2.0	36.8	62.5	44.4
+ adapt.	35.1	44.6	41.4

ICSI

	IHM-Mix	SDM
SURT 2.0	27.8	59.7
+ adapt.	24.4	32.2

End-to-end multi-talker ASR

Next steps

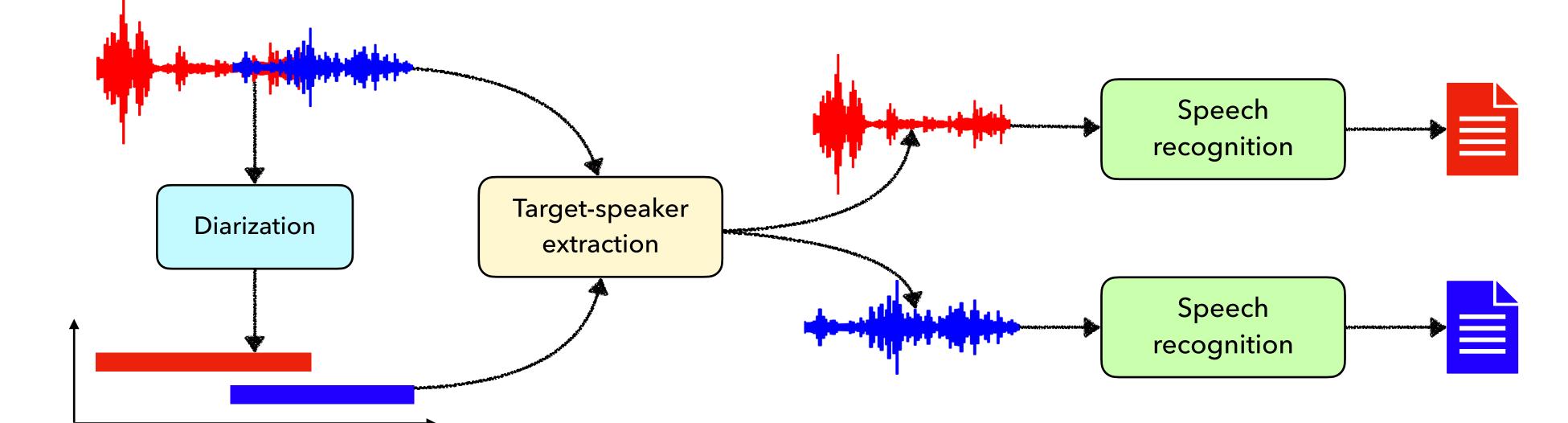
- 1. How to perform word-level speaker attribution?
- 2. Decoding/rescoring across branches
- 3. Can we use pre-trained self-supervised models for the encoder?

Multi-talker ASR + diarization

Further reading

- "The JHU multi-microphone multi-speaker ASR system for the CHiME-6 challenge." A. Arora*, D. Raj*,
 A. S. Subramanian*, K. Li*, B. Benyair, M. Maciejewski, P. Zelasko, P. Garcia, S. Watanabe, S.
 Khudanpur. The 6th CHiME Workshop, 2020.
- 2. "Integration of speech separation, diarization, and recognition for multi-speaker meetings: System description, comparison, and analysis." **D. Raj**, P. Denisov, Z. Chen, H. Erdogan, Z. Huang, M. He, S. Watanabe, J. Du, T. Yoshioka, Y. Luo, N. Kanda, J. Li, S. Wisdom, J. R. Hershey. *IEEE SLT 2021*.
- 3. "<u>Joint speaker diarization and speech recognition based on region proposal networks</u>." Z. Huang, M. Delcroix, P. Garcia, S. Watanabe, **D. Raj**, S. Khudanpur. *Computer, Speech, and Language, Vol. 72*.
- 4. "The CHiME-7 DASR Challenge: Distant Meeting Transcription with Multiple Devices in Diverse Scenarios." S. Cornell, M. Wiesner, S. Watanabe, **D. Raj**, X. Chang, P. García, Y. Masuyama, Z. Wang, S. Squartini, and S. Khudanpur. ArXiv, 2023.

- Overlap-aware spectral clustering
- Ensemble methods
- GPU-accelerated GSS for multi-channel extraction
- Using wake-words for targetspeaker ASR



Questions?



- **Efficient training** of transducer-based multitalker ASR
- Improvements in modeling, mixture simulation, and training strategies