What is full-duplex SLIM?

A system that can listen and speak "simultaneously"

Modular full-duplex

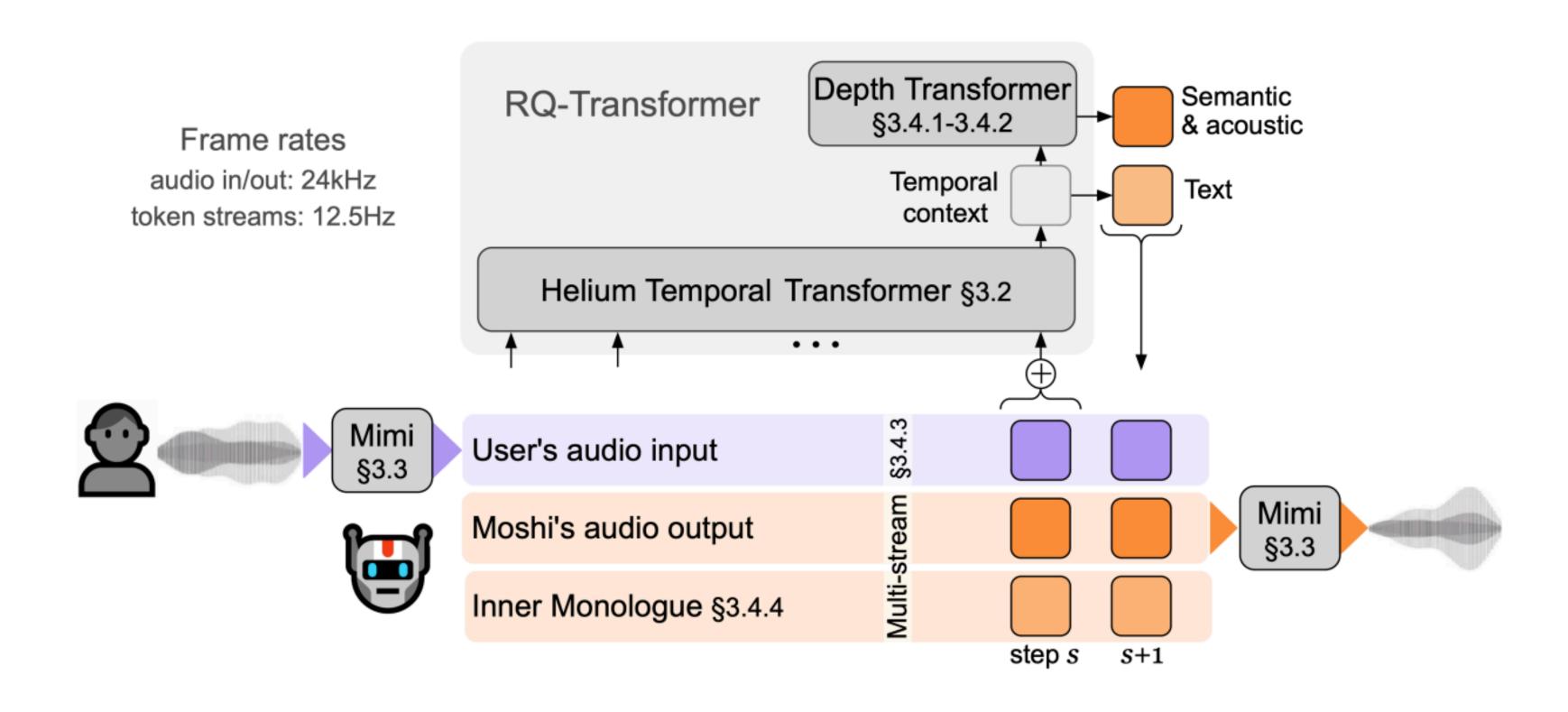
- Using an external orchestrator: FlexDuo, Semantic VAD, etc.
- Using internal state prediction: FreezeOmni, NeuralFSM, etc.

End-to-end full-duplex

- Single-stream modeling: SyncLLM, OmniFlatten, SALM-Omni, etc.
- Multi-stream modeling: dGSLM, Moshi, Voila, etc.

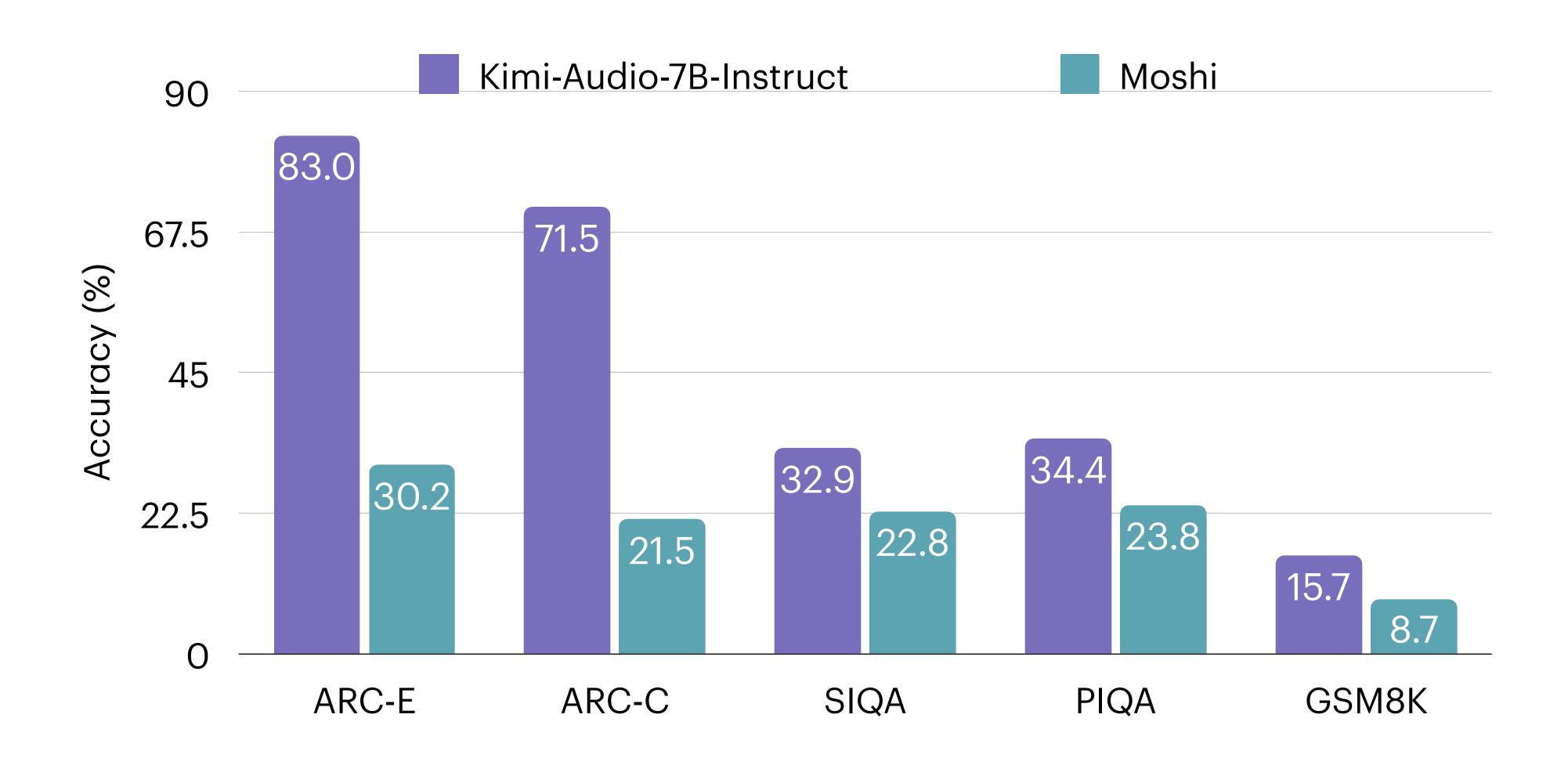
Moshi

Open-source FD model by Kyutai



D'efossez, Alexandre et al. "Moshi: a speech-text foundation model for real-time dialogue." ArXiv.

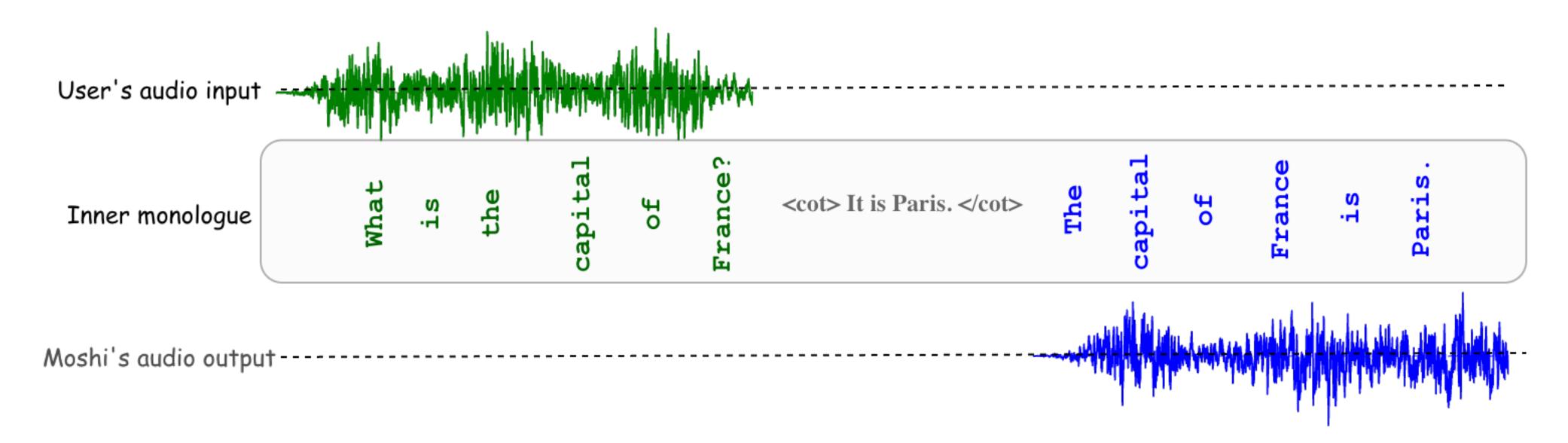
Moshi performs poorly on spoken reasoning tasks



CoT fine-tuning for Moshi

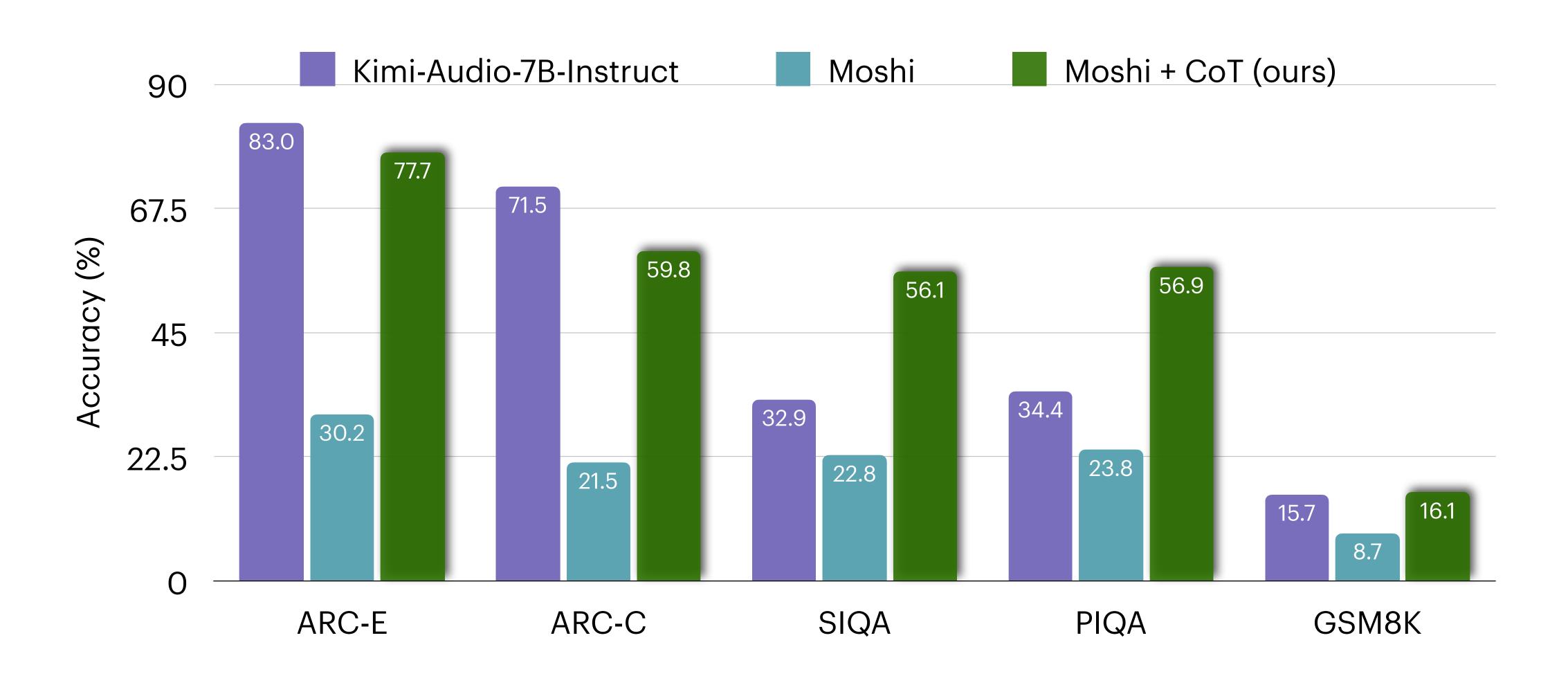
CoT = chain-of-thought

- Fine-tune the model to additionally generate the following on the text monologue channel:
 - Streaming user audio transcripts
 - Chain of thought (reasoning) between <cot> and </cot>

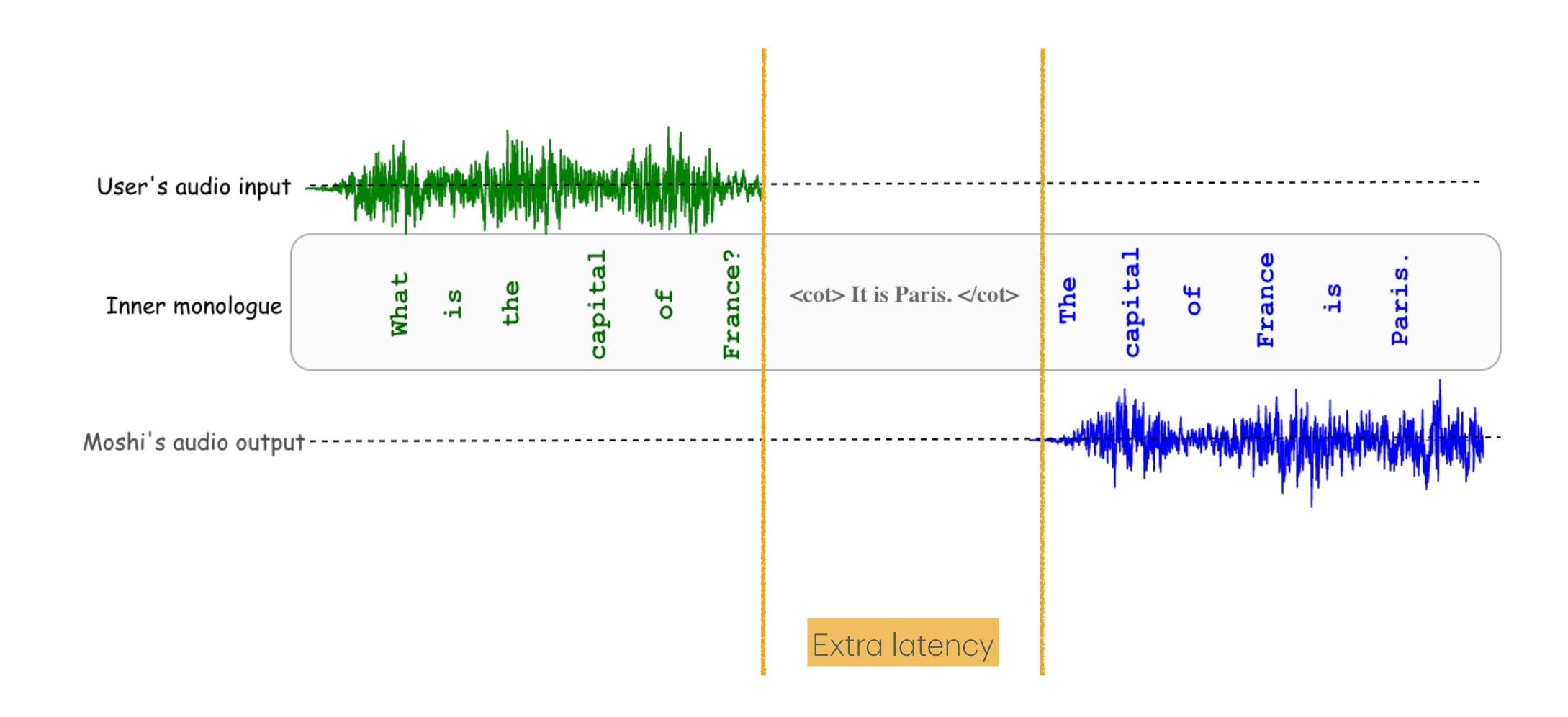


CoT improves reasoning by 2-3x...

We use synthesized CoT-Collection training data



...but it increases response latency!



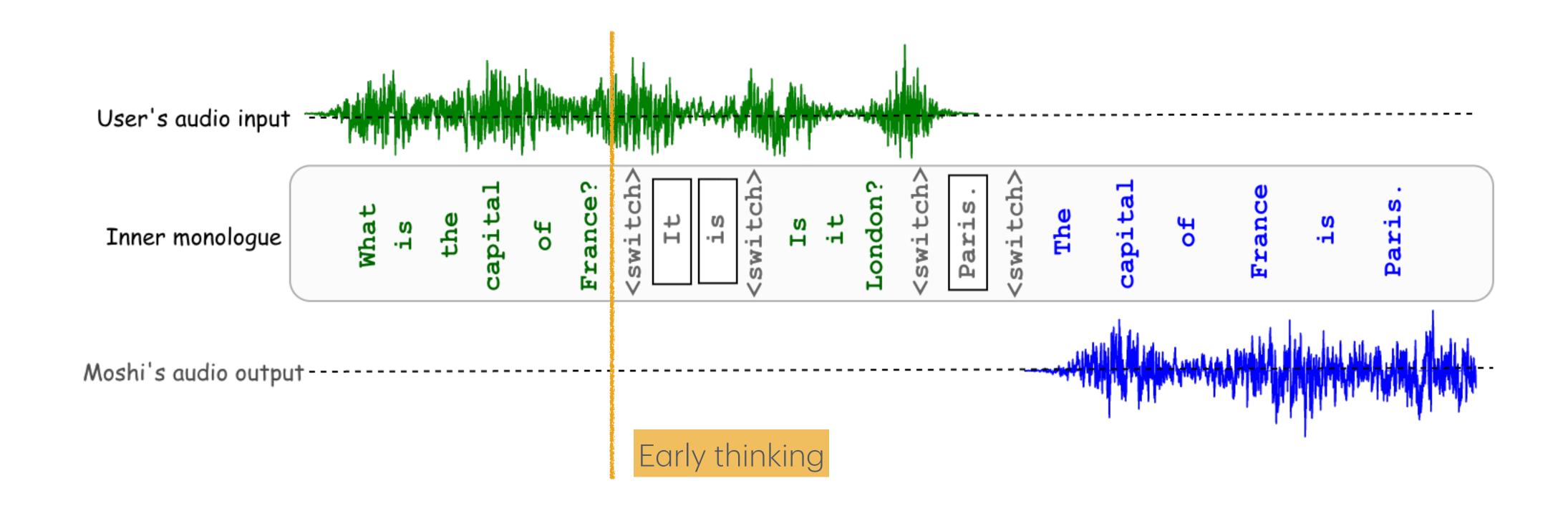
How can we reduce this latency?

- Two possible approaches:
 - 1. **Thinking while speaking**: interleave thinking with response generation, e.g. Mini-Omni-Reasoner (Xie et al.)
 - 2. Thinking while listening: start reasoning early during user's question!

We train the model to start reasoning early

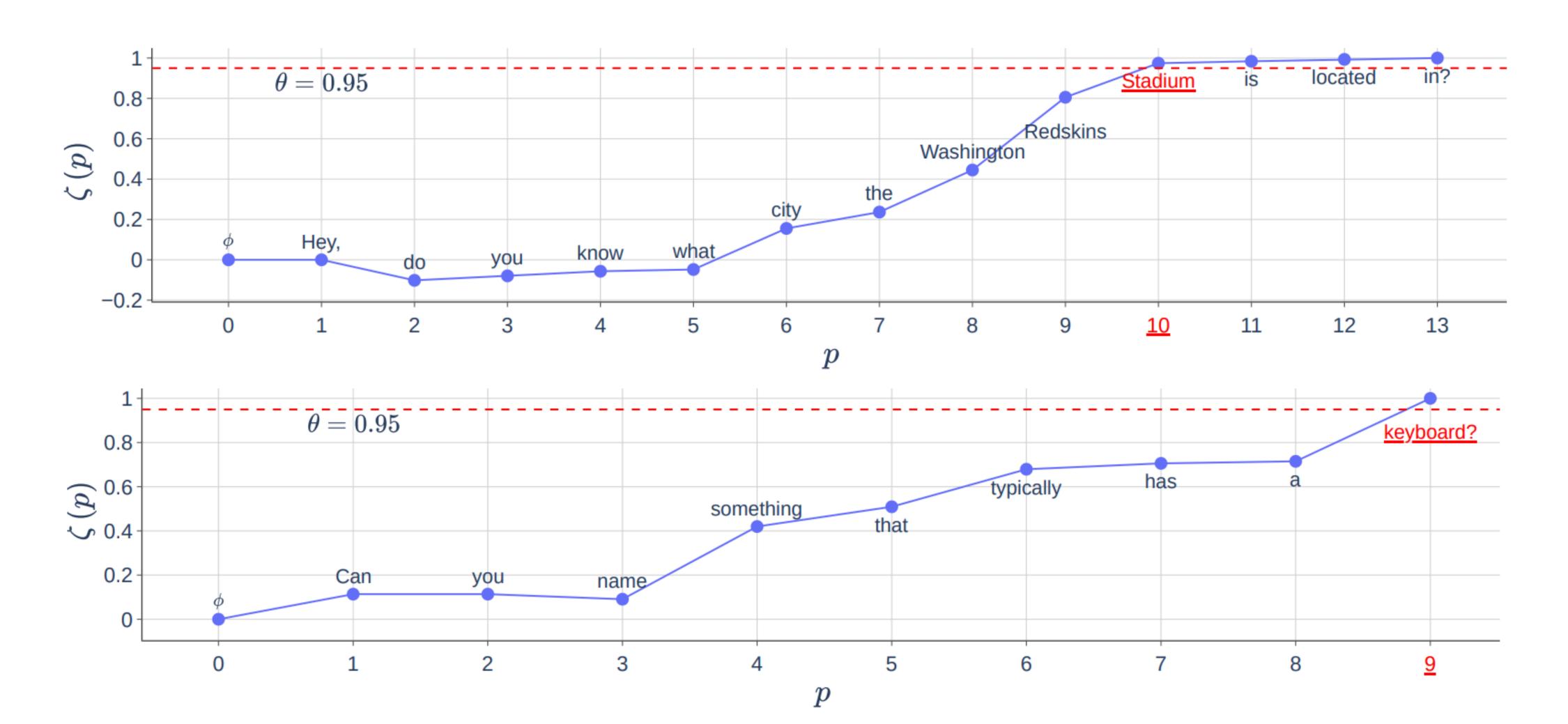
CoT fine-tuning with left shifted tokens

• We use special <switch> tokens to interleave the ASR and reasoning tokens.



How much should we shift?

We want to identify an inflection point in the question



Question Completeness (QC)

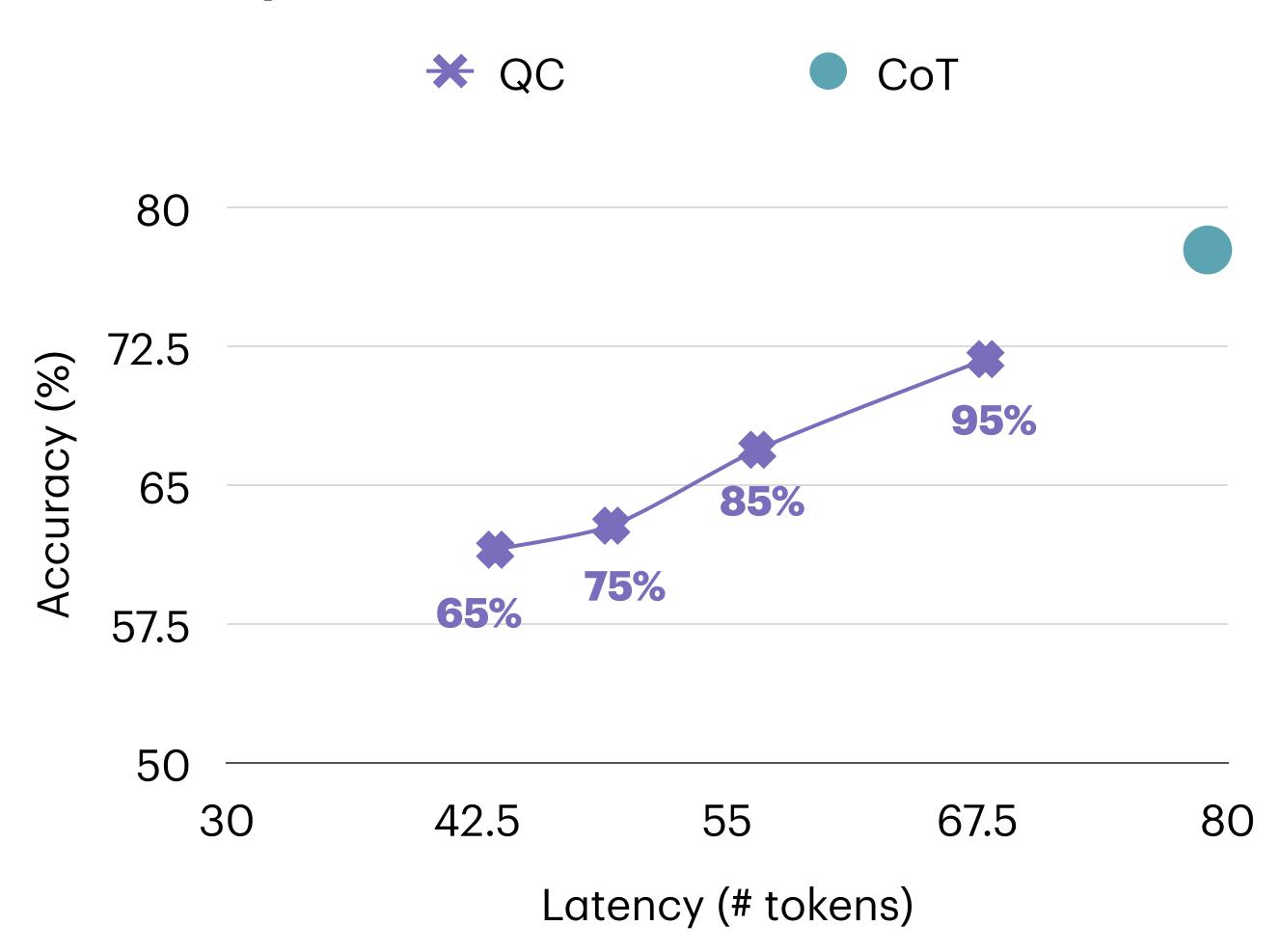
• We use an external LLM (LLaMA3-8B-Chat) to get the probability of the reasoning (**R**) + answer (**A**) after each word of the question, and then compute the **Question Completeness** $\zeta(p)$:

$$\zeta(p) = 1 - \frac{\mathcal{D}_{\mathsf{KL}}(\mathbf{X}_N \mid \mathbf{X}_p)}{\mathcal{D}_{\mathsf{KL}}(\mathbf{X}_N \mid \mathbf{X}_0)}, \quad \text{where } \mathbf{X}_p = \Pr(\mathbf{R}, \mathbf{A} \mid \mathbf{Q}_{0:p})$$

- This quantity measures how "complete" is the question at word p from the point-of-view of generating ${\bf R}$ and ${\bf A}$.
- The QC curve is monotonically increasing in p.

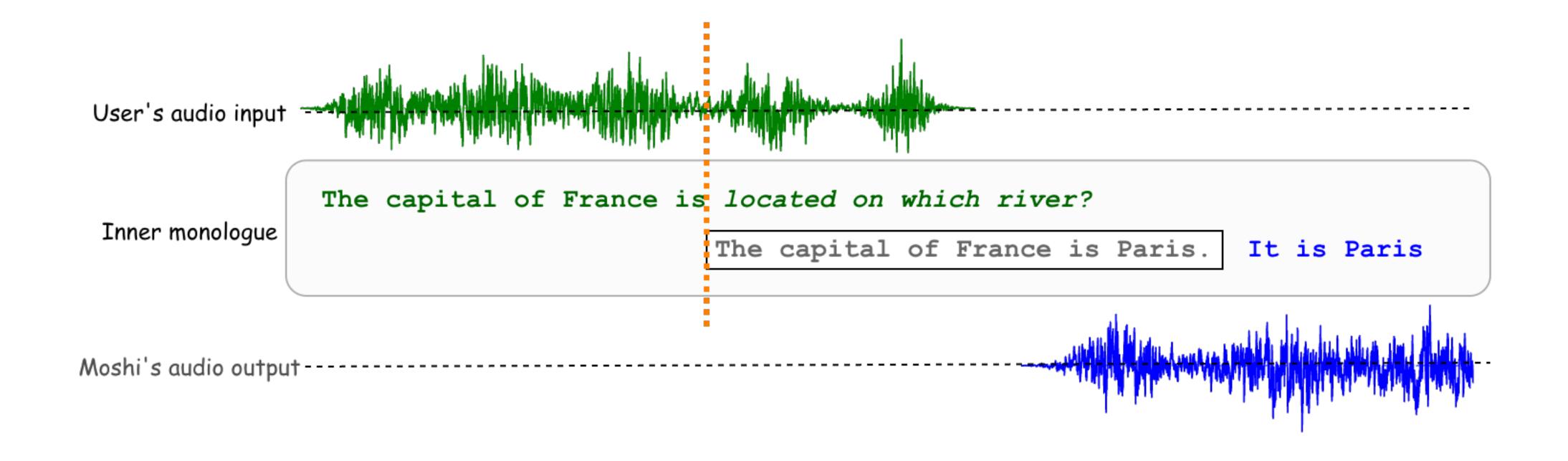
Training with different QC thresholds

Accuracy v/s latency on ARC-E



Why does accuracy degrade?

• The model is not trained to consider new incoming information after it starts reasoning!



We use DPO to teach adaptive reasoning

Preference pairs are created using rejection sampling

$$\mathcal{L}_{\mathrm{DPO}}(\pi_{\theta}) = -\mathbb{E}_{(x,y^{+},y^{-})\sim\mathcal{D}}\left[\log\sigma\left(\beta\left[\log\frac{\pi_{\theta}(y^{+}|x)}{\pi_{\mathrm{ref}}(y^{+}|x)} - \log\frac{\pi_{\theta}(y^{-}|x)}{\pi_{\mathrm{ref}}(y^{-}|x)}\right]\right)\right]$$

- 1. Train SFT model π_{ref} with QC = 75%.
- 2. Generate 10 outputs per prompt (x), where we force the model to decode < start_cot> at QC = 75%.
- 3. Select a response with correct answer as y^+ , and one with wrong answer as y^- .

Accuracy improves significantly after DPO

