My 5 minute talk

about 2 of my ongoing projects

Desh Raj

History

History

History

Noise-aware Training of Acoustic Models The Problem

- Speaker effects
- Background noise
- Reverberation

The Problem

- Speaker effects
- Background noise
- Reverberation

Noise-aware Training of Acoustic Models Well, actually...

VERY DEEP CONVOLUTIONAL NEURAL NETWORKS FOR ROBUST SPEECH RECOGNITION

Yanmin Qian^{1,2}, Philip C Woodland²

¹ Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China ²Cambridge University Engineering Department, Cambridge CB2 1PZ, UK yanminqian@sjtu.edu.cn, pcw@eng.cam.ac.uk

Noise-aware Training of Acoustic Models Well, actually...

Noise-aware Training of Acoustic Models Well, actually...

VERY DEEP CONVOLUTIONAL NEURAL NETWORKS FOR ROBUST SPEECH RECOGNITION

Untangling in Invariant Speech Recognition

Cory Stephenson Intel AI Lab cory.stephenson@intel.com

1

Jenelle Feather MIT jfeather@mit.edu

Suchismita Padhy Intel AI Lab suchismita.padhy@intel.com

Oguz Elibol Intel AI Lab oguz.h.elibol@intel.com Hanlin Tang Intel AI Lab hanlin.tang@intel.com

Josh McDermott MIT/ Center for Brains, Minds, and Machines jhm@mit.edu

SueYeon Chung Columbia University/ MIT sueyeon@mit.edu

eech Recognition

Sebastian Stüker¹, Alex

rlsruhe, Germany

A

"But we don't have enough data or GPUs."

- Every DL practitioner not working at Froogle

Noise-aware Training of Acoustic Models An idea from speaker adaptation

Saon, George, et al. "Speaker adaptation of neural network acoustic models using i-vectors." 2013 IEEE Workshop on Automatic Speech Recognition and Understanding. IEEE, 2013.

An idea from speaker adaptation

Saon, George, et al. "Speaker adaptation of neural network acoustic models using i-vectors." 2013 IEEE Workshop on Automatic Speech Recognition and Understanding. IEEE, 2013.

Noise-aware Training of Acoustic Models An idea from speaker adaptation

Where to get noise embeddings?

Noise-aware Training of Acoustic Models Where to get noise embeddings?

PROBING THE INFORMATION ENCODED IN X-VECTORS

Desh Raj, David Snyder, Daniel Povey, Sanjeev Khudanpur

Center for Language and Speech Processing & Human Language Technology Center of Excellence The Johns Hopkins University, Baltimore, MD 21218, USA.

draj@cs.jhu.edu, {david.ryan.snyder, dpovey}@gmail.com, khudanpur@jhu.edu

ASRU 2019

Noise-aware Training of Acoustic Models Where to get noise embeddings?

Noise-aware Training of Acoustic Models Where to get noise embeddings?

PROBING THE INFORMATION ENCODED IN X-VECTORS

Desh Raj, David Snyder, Daniel Povey, Sanjeev Khudanpur

Center for Language and Speech Processing & Human Language Technology Center of Excellence The Johns Hopkins University, Baltimore, MD 21218, USA.

draj@cs.jhu.edu, {david.ryan.snyder, dpovey}@gmail.com, khudanpur@jhu.edu

But also contain noise information if trained without augmentation

ASRU 2019

Using x-vectors

Using x-vectors

Speech/silence classification

Input sequence

Speech/silence classification

No extra training needed!

Speech Activity Detection system

Already have a trained GMM-HMM system

Noise-aware Training of Acoustic Models Extension to online ASR

How to estimate noise embedding in streaming ASR?

Noise-aware Training of Acoustic Models Extension to online ASR

How to estimate noise embedding in streaming ASR?

$$Bayesian Model$$

$$Bayesian \mu_{i} = \begin{bmatrix} \mu_{s_{i}} \\ \mu_{n_{i}} \end{bmatrix}$$

$$\mathbf{K}_{i} = \begin{bmatrix} (1 + r_{s_{i}}N_{s_{i}})\mathbf{\Lambda}_{s} & -\mathbf{\Lambda}_{s}\mathbf{B} \\ -\mathbf{B}^{T}\mathbf{\Lambda}_{s} & (1 + r_{n_{i}}N_{n_{i}})\mathbf{\Lambda}_{n} + \mathbf{B}^{T}\mathbf{\Lambda}_{s}\mathbf{B} \end{bmatrix}$$

$$\mathbf{Q}_{i} = \begin{bmatrix} \mathbf{\Lambda}_{s}(\mathbf{a} + r_{s_{i}}\mathbf{F}_{s_{i}}) \\ \mathbf{\Lambda}_{n}(\mu_{n} + r_{n_{i}}\mathbf{F}_{n_{i}}) + \mathbf{B}^{T}\mathbf{\Lambda}_{s}\mathbf{a} \end{bmatrix} .$$

The CHiME-6 Challenge

The CHiME-6 Challenge What is it?

https://chimechallenge.github.io/chime6/overview.html

The CHiME-6 Challenge What is it?

The CHiME-6 Challenge

How to solve it?

The CHiME-6 Challenge How to solve it?

END-TO-END NEURAL NETWORK

Num. Params = Number of atoms in the universe + National debt

	501-0001845-0002138	1	0.820	0.060	we
	501-0001845-0002138	1	0.880	0.120	can
	501-0001845-0002138	1	1.000	0.110	do
	501-0001845-0002138	1	1.110	0.270	that
	501-0001845-0002138	1	1.410	0.400	after
•	501-0002175-0003003	1	0.120	0.160	SO
	501-0002175-0003003	1	0.280	0.340	maybe
	501-0002175-0003003	1	0.870	0.320	someon
	501-0002175-0003003	1	1.190	0.150	can
	501-0002175-0003003	1	1.340	0.180	help
	501-0002175-0003003	1	1.660	0.190	cook

The CHiME-6 Challenge How to solve it?

S01-0002175-0003003 1 1.660 0.190 cook

Desh, Paola, Aswin, Bar, Matt, Piotr, Ashish, Ke, Sanjeev, Shinji

Talk to me about... (Inspired from Suzanna's talk)

