Joint CTC-Attention based Endto-end Speech Recognition using Multi-task Learning

Suyoun Kim, Takaaki Hori, and Shinji Watanabe

Presenter: Desh Raj

Outline

- CTC and attention—the good and the bad
- The joint CTC-attention model
- Experimental results

End-to-end ASR

- Several issues with hybrid DNN-HMM models
- Several independent moving components—acoustic model, language model, lexicon, etc.
- Make conditional independence assumptions and approximations
- End-to-end models learn acoustic frames to character mapping

End-to-end ASR

- Two main approaches:
 - 1. Connectionist temporal classification (CTC)
 - 2. Attention-based encoder decoder

CTC

 Uses intermediate label representation — allows repetitions of labels and occurrence of a blank label

$$P(\boldsymbol{y}|\boldsymbol{x}) = \sum_{\boldsymbol{\pi}\in\Phi(\boldsymbol{y'})} P(\boldsymbol{\pi}|\boldsymbol{x}),$$

Sum over all possible intermediate label representations

CTC

 Uses intermediate label representation — allows repetitions of labels and occurrence of a blank label

$$P(\boldsymbol{y}|\boldsymbol{x}) = \sum_{\boldsymbol{\pi}\in\Phi(\boldsymbol{y'})} P(\boldsymbol{\pi}|\boldsymbol{x}),$$

Conditional independence of output labels

$$P(\boldsymbol{\pi}|\boldsymbol{x}) \approx \prod_{t=1}^{T} P(\pi_t|\boldsymbol{x}) = \prod_{t=1}^{T} q_t(\pi_t)$$

CTC

 Uses intermediate label representation — allows repetitions of labels and occurrence of a blank label

$$P(\boldsymbol{y}|\boldsymbol{x}) = \sum_{\boldsymbol{\pi}\in\Phi(\boldsymbol{y'})} P(\boldsymbol{\pi}|\boldsymbol{x}),$$

• Can just use forward-backward to compute

• No conditional independence assumptions

$$P(\boldsymbol{y}|\boldsymbol{x}) = \prod_{u} P(y_u|\boldsymbol{x}, y_{1:u-1})$$

$$\boldsymbol{h} = \text{Encoder}(\boldsymbol{x})$$

$$y_u \sim \text{AttentionDecoder}(\boldsymbol{h}, y_{1:u-1}).$$

Input Sequence

• No conditional independence assumptions

$$P(\boldsymbol{y}|\boldsymbol{x}) = \prod_{u} P(y_u|\boldsymbol{x}, y_{1:u-1})$$

$$\boldsymbol{h} = \text{Encoder}(\boldsymbol{x})$$

$$y_u \sim \text{AttentionDecoder}(\boldsymbol{h}, y_{1:u-1}).$$

Can be content-based or location-based

- So what's the problem?
- Too much flexibility—easily affected by noise.
- Also hard to train from scratch on long input sequences.

- So what's the problem?
- Too much flexibility—easily affected by noise.
- Also hard to train from scratch on long input sequences.

CTC models don't have these problems since they impose left-to-right constraints

Joint CTC-Attention

Joint CTC-Attention

Experiments

- 3 datasets—WSJ1 (81 hours), WSJ0 (15 hours), and Chime-4 (18 hours)
- 40 Mel-scale filterbank coefficients + first and second order temporal derivatives = 120 feature values
- No LM or lexicon used

Experiments

- Encoder—4-layer Bi-LSTM
- Top 2 layers perform sequence contraction by half each
- Decoder—1-layer LSTM

Model(train)	CER(valid)	CER(eval)
WSJ-train_si284 (80hrs)	dev93	eval92
CTC	11.48	8.97
Attention(content-based)	13.68	11.08
Attention(location-based)	11.98	8.17
$MTL(\lambda = 0.2)$	11.27	7.36
$MTL(\lambda = 0.5)$	12.00	8.31
$MTL(\lambda = 0.8)$	11.71	8.45
WSJ-train_si84 (15hrs)	dev93	eval92
CTC	27.41	20.34
Attention(content-based)	28.02	20.06
Attention(location-based)	24.98	17.01
$MTL(\lambda = 0.2)$	23.03	14.53
$MTL(\lambda = 0.5)$	26.28	16.24
$MTL(\lambda = 0.8)$	32.21	21.30
CHiME-4-tr05_multi (18hrs)	dt05_real	et05_real
CTC	37.56	48.79
Attention(content-based)	43.45	54.25
Attention(location-based)	35.01	47.58
$MTL(\lambda = 0.2)$	32.08	44.99
$MTL(\lambda = 0.5)$	34.56	46.49
$MTL(\lambda = 0.8)$	35.41	48.34

Clean environment—possible that CTC improved generalization since its training does not use character inter-dependencies

Model(train)	CER(valid)	CER(eval)
WSJ-train_si284 (80hrs)	dev93	eval92
CTC	11.48	8.97
Attention(content-based)	13.68	11.08
Attention(location-based)	11.98	8.17
$MTL(\lambda = 0.2)$	11.27	7.36
$MTL(\lambda = 0.5)$	12.00	8.31
$MTL(\lambda = 0.8)$	11.71	8.45
WSJ-train_si84 (15hrs)	dev93	eval92
CTC	27.41	20.34
Attention(content-based)	28.02	20.06
Attention(location-based)	24.98	17.01
$MTL(\lambda = 0.2)$	23.03	14.53
$MTL(\lambda = 0.5)$	26.28	16.24
MTL() = 0.8)	32.21	21.30
CHiME-4-tr05_multi (18hrs)	dt05_real	et05_real
CTC	37.56	48.79
Attention(content-based)	43.45	54.25
Attention(location-based)	35.01	47.58
$MTL(\lambda = 0.2)$	32.08	44.99
$MTL(\lambda = 0.5)$	34.56	46.49
$MTL(\lambda = 0.8)$	35.41	48.34

Noisy environment—much better than attention-based model

CTC trains quickly but low accuracy

Fig. 2: Comparison of learning curves: CTC, location-based attention model, and MTL with ($\lambda = 0.2, 0.5, 0.8$). The character accuracy on the validation set of CHiME-4 is calculated by edit distance between hypothesis and reference. Note that the reference history were used in the attention and our MTL models.

Attention-based model reaches same accuracy as MTL but takes twice as much time

Fig. 2: Comparison of learning curves: CTC, location-based attention model, and MTL with ($\lambda = 0.2, 0.5, 0.8$). The character accuracy on the validation set of CHiME-4 is calculated by edit distance between hypothesis and reference. Note that the reference history were used in the attention and our MTL models.

Fig. 2: Comparison of learning curves: CTC, location-based attention model, and MTL with ($\lambda = 0.2, 0.5, 0.8$). The character accuracy on the validation set of CHiME-4 is calculated by edit distance between hypothesis and reference. Note that the reference history were used in the attention and our MTL models.

Attention alignments between characters and acoustic frames

Does not learn desired alignments even after 9 epochs

Learns desired alignment after 5 epochs

Key takeaways

- Combining CTC and attention performs better on both clean and noisy data
- Speeds up training significantly
- Also gives desired alignments unlike attention

Thank you!

Questions? Comments?