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Outline

e CTC and attention—the good and the bad
e The joint CTC-attention model

e Experimental results



End-to-end ASR

Several issues with hybrid DNN-HMM models

Several independent moving components —acoustic
model, language model, lexicon, etc.

Make conditional independence assumptions and
approximations

End-to-end models learn acoustic frames to character
mapping



End-to-end ASR

e [woO main approaches:
1. Connectionist temporal classification (CTC)

2. Attention-based encoder decoder



CTC

e Uses intermediate label representation—allows repetitions
of labels and occurrence of a blank label

Sum over all possible intermediate
label representations



CTC

e Uses intermediate label representation—allows repetitions
of labels and occurrence of a blank label

Conditional
independence of output
labels




CTC

e Uses intermediate label representation—allows repetitions
of labels and occurrence of a blank label

P(ylx) = Z P(m|x),

wed(y’)

e Can just use forward-backward to compute



Attention

e No conditional independence assumptions

P(y|x) =HP(yu|m,y1;u_1)

h = Encoder(x)
Y., ~ AttentionDecoder(h, y1.,,—1).



Attention
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Attention

e No conditional independence assumptions

P(ylz) = | P(yule, yru—1)

h = Encoder(x)
{ AttentionDecoder(h, y1.u—1)-

Can be content-based or
location-based



Attention

e So what’s the problem?
 Too much flexibility —easily affected by noise.

e Also hard to train from scratch on long input sequences.



Attention

e So what’s the problem?

CTC models don’t have these problems since they
impose left-to-right constraints



Joint CTC-Attention
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Joint CTC-Attention

Lyt = Alctc + (1 — A) LAttention
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Experiments

e 3 datasets—WSJ1 (81 hours), WSJO (15 hours), and
Chime-4 (18 hours)

e 40 Mel-scale filterbank coefficients + first and second
order temporal derivatives = 120 feature values

e No LM or lexicon used



Experiments

e Encoder—4-layer Bi-LSTM
e TJop 2 layers perform sequence contraction by half each

e Decoder—1-layer LSTM



Results

o Model(train) | CER(valid) CER(eval)
| WSJ-train_si284 (80hrs) |  dev93 evalo2 |
"‘ CTC 11.48 8.97 @
| AttenFlon(cont.ent-based) 13.68 11.08 | Clean environment—possible
Attention(location-based) 11.98 8.17 | ]
MTLOA = 0.2) | 1127 7.36 that CTC improved
MTL(\ = 0.5) 12.00 8.31 | generalization since its
MTL(\ = 0.8) 11.71 8.45 | training does not use
WSJ-train_si84 (15hrs) dev93 eval92 i character inter-dependencies
’* CTC | 2741 2034 |
| Attention(content-based) 28.02 20.06 |
‘ Attention(location-based) 24.98 17.01 ‘
‘ MTL(\ = 0.2) 23.03 14.53 |
l MTL() = 0.5) 26.28 16.24 ,
h MTL(\ = 0.8) 32.21 2130 |
— CHiME-4-tr05_multi (18hrs) | dt05 real  ot05.real
CTC 37.56 48.79
Attention(content-based) 43.45 54.25
Attention(location-based) 35.01 47.58
MTL(\ = 0.2) 32.08 44.99
MTL(\ = 0.5) 34.56 46.49
MTL(\ = 0.8) 35.41 48.34




Results

Model(train) | CER(valid) CER(eval)

WSJ-train_si284 (80hrs) dev93 eval92
CTC 11.48 8.97
Attention(content-based) 13.68 11.08
Attention(location-based) 11.98 8.17
MTL(\ = 0.2) 11.27 7.36

MTL(A = 0.5) 12.00 8.31

MTL(\ = 0.8) 11.71 8.45
WSJ-train_si84 (15hrs) dev93 eval92
CTC 27.41 20.34
Attention(content-based) 28.02 20.06
Attention(location-based) 24.98 17.01
MTL(\ = 0.2) 23.03 14.53

MTL(\ = 0.5)

e ————

16.2

| CHiME-4-tr05 _multi (18hrs)

dt05 _real

et05_real

,]l CIC | 3756 4879

| Attention(content-based) 43.45 54.25

Attention(location-based) 35.01 47.58

MTL(\ = 0.2) 32.08 44.99

l MTL(\ = 0.5) 34.56 46.49
MTL(\ = 0.8)

Noisy environment—much
better than attention-based
model



Results
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Fig. 2: Comparison of learning curves: CTC, location-based atten-
tion model, and MTL with (A= 0.2, 0.5, 0.8). The character accuracy
on the validation set of CHiIME-4 is calculated by edit distance be-
tween hypothesis and reference. Note that the reference history were
used in the attention and our MTL models.

CTC trains quickly but low
accuracy
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Fig. 2: Comparison of learning curves: CTC, location-based atten-
tion model, and MTL with (A= 0.2, 0.5, 0.8). The character accuracy
on the validation set of CHiIME-4 is calculated by edit distance be-
tween hypothesis and reference. Note that the reference history were
used in the attention and our MTL models.

Attention-based model
reaches same accuracy as
MTL but takes twice as much
time
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Fig. 2: Comparison of learning curves: CTC, location-based atten-
tion model, and MTL with (A= 0.2, 0.5, 0.8). The character accuracy
on the validation set of CHiIME-4 is calculated by edit distance be-
tween hypothesis and reference. Note that the reference history were
used in the attention and our MTL models.

More weight to CTC loss->
faster convergence
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Results

(b) Attention 3 epoch (c) Attention 5 epoch (d) Attention 7 epoch

(g) MTL 3 epoch (h) MTL 5 epoch (1) MTL 7 epoch
Attention alignments between characters

and acoustic frames

(e) Attention 9 epoch

(j) MTL 9 epoch



Results
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(f) MTL 1 epoch (g) MTL 3 epoch (h) MTL 5 epoch (i) MTL 7 epoch (j) MTL 9 epoch

Does not learn desired alignments even
after 9 epochs
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Results

Learns desired alignment after 5 epochs

(j) MTL 9 epoch




Key takeaways

e Combining CTC and attention performs better on both
clean and noisy data

e Speeds up training significantly

e Also gives desired alignments unlike attention



Thank you!

Questions? Comments?



