
Imputer:
Sequence Modeling via Imputation and

Dynamic Programming
William Chan, Chitwan Saharia, Geoffrey Hinton, Mohammad Norouzi, Navdeep Jaitly

Google Brain

Presenter: Desh Raj

Overview

• Preliminary: end-to-end ASR model types

• The Imputer model

• Training scheme

• Decoding policies

• Experimental results

Preliminary

• 3 kinds of popular end-to-end ASR models:

1. CTC-based

2. RNN-Transducer

3. Encoder-decoder (with attention)

CTC

A comparison of sequence-to-sequence models for speech recognition. Prabhavalkar et al.
Interspeech 2017.

CTC

A comparison of sequence-to-sequence models for speech recognition. Prabhavalkar et al.
Interspeech 2017.

Conditional independence assumption

So all tokens can be generated in parallel

RNN-Transducer

A comparison of sequence-to-sequence models for speech recognition. Prabhavalkar et al.
Interspeech 2017.

RNN-Transducer

A comparison of sequence-to-sequence models for speech recognition. Prabhavalkar et al.
Interspeech 2017.

Generated token depends on previous output

So have to generate sequentially

Encoder-decoder (with
attention)

A comparison of sequence-to-sequence models for speech recognition. Prabhavalkar et al.
Interspeech 2017.

Encoder-decoder (with
attention)

A comparison of sequence-to-sequence models for speech recognition. Prabhavalkar et al.
Interspeech 2017.

Generated token depends on previous output

So have to generate sequentially

Trade-off

• Speed vs. performance tradeoff

• For faster inference, sequence generation must be
independent of previous tokens e.g. CTC

• But for better performance, conditionally dependent
sequence generation is required e.g. RNN-T

Trade-off

• Speed vs. performance tradeoff

• For faster inference, sequence generation must be
independent of previous tokens e.g. CTC

• But for better performance, conditionally dependent
sequence generation is required e.g. RNN-T

Autoregressive

Trade-off

• Speed vs. performance tradeoff

• For faster inference, sequence generation must be
independent of previous tokens e.g. CTC

• But for better performance, conditionally dependent
sequence generation is required e.g. RNN-T

Non-autoregressive

Autoregressive

Motivating Question

• Can we have something in between?

• A model which is not fully autoregressive (i.e. does not
take O(n) steps during inference)

• But also does not have conditional independence
assumptions

– Authors of the Imputer paper

“Yes, we can.”

A bit more on CTC

Sequence modeling with CTC. Awni Hannun. https://distill.pub/2017/ctc/

https://distill.pub/2017/ctc/

The Imputer Decoding Model

Output sequence length = |x| is divided into blocks of size B

A block is generated independent of other blocks

The Imputer Decoding Model

Output sequence length = |x| is divided into blocks of size B

A block is generated independent of other blocks

B = 1 ?

The Imputer Decoding Model

Output sequence length = |x| is divided into blocks of size B

A block is generated independent of other blocks

B = 1 ? CTC

B = |x| ?

The Imputer Decoding Model

Output sequence length = |x| is divided into blocks of size B

A block is generated independent of other blocks

B = 1 ? CTC

B = |x| ? Fully autoregressive

The Imputer Decoding Model

New alignment for the block is generated
depending on input x and previous alignment

The Imputer Decoding Model

Keep the token with largest probability and
merge with existing alignment

The Imputer Decoding Model

1 token “committed” in each step

The Imputer Decoding Model

1 token “committed” in each step

So how many steps would we need in total to get the sequence?

The Imputer Decoding Model

Sequence is generated in B steps

The Imputer Decoding Model

In a block, token generation is dependent
on other tokens within the block

The model

The model

New alignment Previous alignment

By conditioning on previous alignment, the tokens
become conditioned on each other

Training objective

Training objective

All alignments of y All masking permutations

Training objective

All alignments of y All masking permutations

Training objective

1. How to sample alignments from q?
2. How to sample masks from r?

Alignment policy

• Suppose we have an “expert” model pretrained e.g. CTC

• Method 1: Get all alignments, store them offline, and
sample from this.

• Method 2: Get best alignment and add noise

Masking policy

• Method 1: Uniform or Bernoulli distribution -> every block
may have different number of masked tokens

• Method 2: Choose b in [0,B) and mask out b tokens in
each block randomly

How to train your Imputer?

1. Imitation learning

• Simply learn to copy the expert CTC model

How to train your Imputer?

2. Dynamic programming

• Marginalize over all possible compatible alignments

Model architecture

Experimental results

WSJ - 82h Librispeech - 960h

Some other stuff

• Block size 8 found to be best for training and inference

• Too large blocks can cause training issues

• All masking policies (Bernoulli, Uniform, Block) perform
similar

Stuff which did not work :)

• Training with stale model samples instead of CTC expert

• Greedy decoding, simulated annealing decoding

Key takeaways

• Want something between CTC and fully autoregressive
models

• Inference in constant time (B steps) + works better than
both

• How to make things non-autoregressive? Use MASKING.
(see BERT, Mask-Predict etc.)

