Imputer:
Sequence Modeling via Imputation and Dynamic Programming

William Chan, Chitwan Saharia, Geoffrey Hinton, Mohammad Norouzi, Navdeep Jaitly
Google Brain

Presenter: Desh Raj
Overview

• Preliminary: end-to-end ASR model types
• The Imputer model
 • Training scheme
 • Decoding policies
• Experimental results
Preliminary
3 kinds of popular end-to-end ASR models:

1. CTC-based
2. RNN-Transducer
3. Encoder-decoder (with attention)

\[P(y|x) = \sum_{\hat{y} \in \mathcal{B}(y,x)} \prod_{t=1}^{T} P(\hat{y}_t|x) \]

CTC

Conditional independence assumption
So all tokens can be generated in parallel

\[
P(y|x) = \sum_{\hat{y} \in \mathcal{B}(y,x)} \prod_{t=1}^{T} P(\hat{y}_t | x)
\]
RNN-Transducer

![Diagram of RNN-Transducer model]

\[
P(y|t, u) = \text{Softmax}(z_{t,u})
\]

\[
h_{t,u}^{\text{joint}} = \tanh(Ah_{t}^{\text{enc}} + Bp_{u} + b)
\]

\[
z_{t,u} = Dh_{t,u}^{\text{joint}} + d
\]

RNN-Transducer

Generated token depends on previous output
So have to generate sequentially

\[
\begin{align*}
\mathbf{h}_{t,u}^{\text{joint}} &= \tanh(A\mathbf{h}_{t}^{\text{enc}} + B\mathbf{p}_{u} + b) \\
\mathbf{z}_{t,u} &= D\mathbf{h}_{t,u}^{\text{joint}} + d
\end{align*}
\]

Encoder-decoder (with attention)

\[P(y_u | y_{u-1}, \ldots, y_0, x) \]

\[\beta_{t,u} = \langle \phi(h_t^{enc}), \psi(h_{u-1}^{att}) \rangle \]

\[\alpha_{t,u} = \frac{e^{\beta_{t,u}}}{\sum_{i=1}^{T} e^{\beta_{i,u}}} \]

\[c_u = \sum_t \alpha_{t,u} h_t^{enc} \]
Encoder-decoder (with attention)

Generated token depends on previous output

So have to generate sequentially

\[\beta_{t,u} = \langle \phi(h^\text{enc}_t), \psi(h^\text{att}_{u-1}) \rangle \]

\[\alpha_{t,u} = \frac{e^{\beta_{t,u}}}{\sum_{i=1}^{T} e^{\beta_{i,u}}} \]

\[c_u = \sum_t \alpha_{t,u} h^\text{enc}_t \]

Trade-off

• Speed vs. performance tradeoff

• For faster inference, sequence generation must be independent of previous tokens e.g. CTC

• But for better performance, conditionally dependent sequence generation is required e.g. RNN-T
Trade-off

• Speed vs. performance tradeoff

• For faster inference, sequence generation must be independent of previous tokens e.g. CTC

• But for better performance, conditionally dependent sequence generation is required e.g. RNN-T
Trade-off

- Speed vs. performance tradeoff

- For **faster inference**, sequence generation must be independent of previous tokens e.g. CTC

- But for **better performance**, conditionally dependent sequence generation is required e.g. RNN-T
Motivating Question

• Can we have something in between?

• A model which is not fully autoregressive (i.e. does not take $O(n)$ steps during inference)

• But also does not have conditional independence assumptions
“Yes, we can.”

– Authors of the Imputer paper
A bit more on CTC

\[p(Y \mid X) = \sum_{A \in A_{X,Y}} \prod_{t=1}^{T} p_t(a_t \mid X) \]

The CTC conditional probability marginalizes over the set of valid alignments computing the probability for a single alignment step-by-step.

The Imputer Decoding Model

1. Initial alignment is filled with mask tokens \varnothing.

Output sequence length $= |x|$ is divided into blocks of size B

A block is generated independent of other blocks
The Imputer Decoding Model

1. Initial alignment is filled with mask tokens ∅.

Output sequence length = |x| is divided into blocks of size B

A block is generated independent of other blocks

B = 1 ?
The Imputer Decoding Model

1. Initial alignment is filled with mask tokens \varnothing.

Output sequence length $= |x|$ is divided into blocks of size B

A block is generated independent of other blocks

$$B = 1 \ ? \quad \text{CTC}$$

$$B = |x| \ ?$$
The Imputer Decoding Model

1. Initial alignment is filled with mask tokens \emptyset.

A block is generated independent of other blocks

Output sequence length $= |x|$ is divided into blocks of size B

$B = 1$? CTC

$B = |x|$? Fully autoregressive
The Imputer Decoding Model

1. Initial alignment is filled with mask tokens \emptyset.

```
    $\emptyset$ $\emptyset$
```

2. Imputer conditions on a previous alignment.

```
    A $\emptyset$ $\emptyset$ $-$ $\emptyset$ $\emptyset$ E $\emptyset$ $\emptyset$ $\emptyset$ F
```

New alignment for the block is generated depending on input x and previous alignment.
The Imputer Decoding Model

1. Initial alignment is filled with mask tokens \emptyset.

\[
\begin{array}{cccccccccccc}
\emptyset & \emptyset \\
\end{array}
\]

2. Imputer conditions on a previous alignment.

\[
\begin{array}{cccccccccccc}
A & \emptyset & \emptyset & \emptyset & _ & \emptyset & \emptyset & E & \emptyset & \emptyset & \emptyset & F \\
\end{array}
\]

3. Imputer generates a new alignment. For each block, the token with the largest probability is selected and merged with the existing alignment.

\[
\begin{array}{cccccccccccc}
A & B & \emptyset & \emptyset & _ & C & D & E & \emptyset & \emptyset & _ & F \\
\end{array}
\]

Keep the token with largest probability and merge with existing alignment
The Imputer Decoding Model

1. Initial alignment is filled with mask tokens \varnothing.

 \[
 \begin{array}{cccccccccc}
 \varnothing & \varnothing \\
 \end{array}
 \]

2. Imputer conditions on a previous alignment.

 \[
 \begin{array}{cccccccccc}
 A & \varnothing & \varnothing & \varnothing & - & \varnothing & \varnothing & E & \varnothing & \varnothing & \varnothing & F \\
 \end{array}
 \]

3. Imputer generates a new alignment. For each block, the token with the largest probability is selected and merged with the existing alignment.

 \[
 \begin{array}{cccccccccc}
 A & B & \varnothing & \varnothing & - & C & D & E & \varnothing & \varnothing & - & F \\
 \end{array}
 \]

1 token “committed” in each step
The Imputer Decoding Model

1. Initial alignment is filled with mask tokens \(\emptyset \).
2. Imputer conditions on a previous alignment.
3. Imputer generates a new alignment. For each block, the token with the largest probability is selected and merged with the existing alignment.

1 token “committed” in each step

So how many steps would we need in total to get the sequence?
The Imputer Decoding Model

1. Initial alignment is filled with mask tokens \emptyset.

```
\emptyset \emptyset
```

2. Imputer conditions on a previous alignment.

```
A \emptyset \emptyset \emptyset \_ \emptyset \emptyset E \emptyset \emptyset \emptyset F
```

3. Imputer generates a new alignment. For each block, the token with the largest probability is selected and merged with the existing alignment.

```
A B \emptyset \emptyset \_ C D E \emptyset \emptyset \emptyset \_ F
```

Sequence is generated in B steps
The Imputer Decoding Model

1. Initial alignment is filled with mask tokens \emptyset.

2. Imputer conditions on a previous alignment.

3. Imputer generates a new alignment. For each block, the token with the largest probability is selected and merged with the existing alignment.

In a block, token generation is dependent on other tokens within the block.
The model

\[p_\theta(a | \tilde{a}, x) = \prod_i p(a_i | \tilde{a}, x; \theta) \]
The model

By conditioning on previous alignment, the tokens become conditioned on each other

\[p_\theta(a|\tilde{a}, x) = \prod_i p(a_i|\tilde{a}, x; \theta) \]
Training objective

\[\log p_\theta(y|x) = \log \sum_{a \in \beta(y)} \sum_{\tilde{a} \in \gamma(a)} p_\theta(a|\tilde{a}, x) \]
Training objective

\[\log p_\theta(y|x) = \log \sum_{a \in \beta(y)} \sum_{\tilde{a} \in \gamma(a)} p_\theta(a|\tilde{a}, x) \]
Training objective

\[J(\theta) = \mathbb{E}_{a \sim q}[\mathbb{E}_{\tilde{a} \sim r}[\log p_{\theta}(a|\tilde{a}, x)]] \]
Training objective

\[J(\theta) = \mathbb{E}_{a \sim q}[\mathbb{E}_{\tilde{a} \sim r}[\log p_\theta(a | \tilde{a}, x)]] \]

1. How to sample alignments from q?
2. How to sample masks from r?
Alignment policy

• Suppose we have an “expert” model pretrained e.g. CTC

• **Method 1**: Get all alignments, store them offline, and sample from this.

• **Method 2**: Get best alignment and add noise

\[
J(\theta) = \mathbb{E}_{a \sim q}[\mathbb{E}_{\tilde{a} \sim r}[^{\log} p_\theta(a|\tilde{a}, x)]]
\]
Masking policy

- **Method 1**: Uniform or Bernoulli distribution -> every block may have different number of masked tokens

- **Method 2**: Choose b in $[0,B)$ and mask out b tokens in each block randomly

\[J(\theta) = \mathbb{E}_{a \sim q} \left[\mathbb{E}_{\tilde{a} \sim r} \log p_\theta(a | \tilde{a}, x) \right] \]
How to train your Imputer?

1. Imitation learning

 • Simply learn to copy the expert CTC model

 $J_{IM}(\theta) = \mathbb{E}_{a \sim q_\phi} \left[\mathbb{E}_{\tilde{a} \sim q_\phi} \left[\log p_\theta(a | \tilde{a}, x) \right] \right]$
How to train your Imputer?

2. Dynamic programming

- Marginalize over all possible compatible alignments

\[J_{DP}(\theta) = \mathbb{E}_{a \sim q_{\phi'}} \left[\mathbb{E}_{\tilde{a} \sim r} \left[\log \sum_{a' \in \beta'(\tilde{a}, a)} p_{\theta}(a'|\tilde{a}, x) \right] \right] \]
Model architecture
New Alignment Posterior

\[p_\theta(a|x, \tilde{a}) \]

Softmax

Self-Attention

Convolution

\(x: \) Audio Filter Banks

Embedding

\(\tilde{a}: \) Prior Alignment
(contains masked out tokens)
Experimental results
WSJ - 82h

LibriSpeech - 960h

Table 1. Wall Street Journal Character Error Rate (CER) and Word Error Rate (WER).

<table>
<thead>
<tr>
<th>Model</th>
<th>CER</th>
<th>WER</th>
<th>Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>seq2seq</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahdanau et al. (2016a)</td>
<td>6.4</td>
<td>18.6</td>
<td>n</td>
</tr>
<tr>
<td>Bahdanau et al. (2016b)</td>
<td>5.9</td>
<td>18.0</td>
<td>n</td>
</tr>
<tr>
<td>Chorowski & Jaitly (2017)</td>
<td>-</td>
<td>10.6</td>
<td>n</td>
</tr>
<tr>
<td>Zhang et al. (2017)</td>
<td>-</td>
<td>10.5</td>
<td>n</td>
</tr>
<tr>
<td>Chan et al. (2017)</td>
<td>-</td>
<td>9.6</td>
<td>n</td>
</tr>
<tr>
<td>Kim et al. (2017)</td>
<td>7.4</td>
<td>-</td>
<td>n</td>
</tr>
<tr>
<td>Serdyuk et al. (2018)</td>
<td>6.2</td>
<td>-</td>
<td>n</td>
</tr>
<tr>
<td>Tjandra et al. (2018)</td>
<td>6.1</td>
<td>-</td>
<td>n</td>
</tr>
<tr>
<td>Sabour et al. (2019)</td>
<td>3.1</td>
<td>9.3</td>
<td>n</td>
</tr>
</tbody>
</table>

CTC			
Graves & Jaitly (2014)	8.4	27.3	1
Liu et al. (2017)	-	16.7	1
CTC (Our Work)	5.6	15.2	1

| Imputer (IM) | 6.2 | 16.5| 8 |
| Imputer (DP) | 4.9 | 12.7| 8 |

Table 2. LibriSpeech test-clean and test-other Word Error Rate (WER).

<table>
<thead>
<tr>
<th>Method</th>
<th>clean</th>
<th>other</th>
<th>Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>seq2seq</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeyer et al. (2018a)</td>
<td>4.9</td>
<td>15.4</td>
<td>n</td>
</tr>
<tr>
<td>Zeyer et al. (2018b)</td>
<td>4.7</td>
<td>15.2</td>
<td>n</td>
</tr>
<tr>
<td>Irie et al. (2019)</td>
<td>4.7</td>
<td>13.4</td>
<td>n</td>
</tr>
<tr>
<td>Sabour et al. (2019)</td>
<td>4.5</td>
<td>13.3</td>
<td>n</td>
</tr>
<tr>
<td>Luscher et al. (2019)</td>
<td>4.4</td>
<td>13.5</td>
<td>n</td>
</tr>
<tr>
<td>Park et al. (2019)</td>
<td>4.1</td>
<td>12.5</td>
<td>n</td>
</tr>
</tbody>
</table>

ASG/CTC			
Collobert et al. (2016)	7.2	-	1
Liptchinsky et al. (2017)	6.7	-	1
CTC (Our Work)	4.6	13.0	1

| Imputer (IM) | 5.5 | 14.6 | 8 |
| Imputer (DP) | 4.0 | 11.1 | 8 |
Some other stuff

- Block size 8 found to be best for training and inference
- Too large blocks can cause training issues
- All masking policies (Bernoulli, Uniform, Block) perform similar
Stuff which did not work :)

- Training with stale model samples instead of CTC expert
- Greedy decoding, simulated annealing decoding
Key takeaways

• Want something between CTC and fully autoregressive models

• Inference in constant time (B steps) + works better than both

• How to make things non-autoregressive? Use MASKING. (see BERT, Mask-Predict etc.)