Anchored Speech Recognition With Neural Transducers

Desh Raj*, Junteng Jia, Jay Mahadeokar, Chunyang Wu, Niko Moritz, Xiaohui Zhang, Ozlem Kalinli

Background speech suppression The problem

Input mixed speech

Speech Recognition

Device-directed speech?

Assistant, play my favorite song...

No, stop!

Background speech suppression Enrollment utterance

K. Žmolíková et al., "SpeakerBeam: Speaker Aware Neural Network for Target Speaker Extraction in Speech Mixtures," in IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 4.

Background speech suppression Speaker embedding

Input mixed speech

My voice is my password.

d-vector

Wang, Quan et al. "VoiceFilter-Lite: Streaming Targeted Voice Separation for On-Device Speech Recognition." InterSpeech (2020).

Background speech suppression Both of these require an *enrollment* stage

Input mixed speech

wy voice is my password

d-vector

Anchored Speech Recognition Wake-word as the anchor

"Assistant"

Wang, Yiming et al. "End-to-end Anchored Speech Recognition." IEEE ICASSP, 2019.

Our work Anchored Speech Recognition + Transducer-based ASR

What is a transducer? Conditional dependence + streaming

- **Encoder** converts input *audio* to highdimensional representation
- **Predictor** is an autoregressive model that encodes input *text*
- Joiner combines audio and text representations to predict next token

Anchoring the transducer **1. Bias the encoder with context**

9

Encoder can use context embedding to suppress background speech.

• Auxiliary network encodes the wake-word segment into a "context" embedding

• We concat this to input features and project to original dimension

***Only 1% of the model size**

Anchoring the transducer 2. Gating the joiner

Boost the logits for blank tokens when speaker is different from wake-word segment.

• We also "gate" the output distribution with the similarity score between context embedding and segments.

 $Sim(\mathbf{c}, Aux(x_t))$

***Only 1% of the model size**

Effect of TS-ASR WER on LibriSpeech mixtures (average over SNRs 1~20 dB)

Primary speaker

Background speaker

Effect of TS-ASR

WER on LibriSpeech mixtures (average over SNRs 1~20 dB)

Effect of TS-ASR

WER on LibriSpeech mixtures (average over SNRs 1~20 dB)

REFERENCE:

Then they seemed to spring from every part of the country

TRANSDUCER:

Then they seemed to spring from every part of the country [hastened may be very much modified to dogmas]

TS-ASR:

Then they seemed to spring from every part of the country

Analysis of joiner gating Similarity scores for target and background segments

Let's think about the context embedding We want to disentangle "style" from "content"

Disentangling "style" from "content" Method 1: Feature Reconstruction

Disentangling "style" from "content" Method 2: VIC Regularization

Bardes, Adrien et al. "VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning." ICLR, 2022.

Effect of auxiliary objectives WER on LibriSpeech mixtures (average over SNRs 1~10 dB)

Context embeddings capture speaker characteristics T-SNE clustering of context embeddings

Summary

- We can use **wake-words** to bias neural transducers to transcribe only the device-directed speech, reducing WER by 19.6%.
- Encoder biasing and joiner gating are complementary in suppressing background speech.
- **Auxiliary objectives** help to retain speaker information in the context embedding and remove content information.

For more information...

- Join us at our **oral** presentation:
 - Date/time: June 7, 2023, 10:50 AM (EEST)
 - Session name: Multi-speaker ASR
- Or contact me at:
 - E-mail: <u>r.desh26@gmail.com</u>
 - Twitter: @rdesh26

