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Modular and End-to-end Perspectives
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Motivation
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https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-other
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LibriSpeech Switchboard AMI CHiME-6

Clean, read speech

Single speaker

Telephone

Conversational

Meeting

Multi-speaker

Dinner party

Multi-speaker
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LibriSpeech Switchboard AMI CHiME-6

Without oracle speaker segments

What changed?


• Conversational speech


• Far-field audio: noise and reverberation


• Overlapping speakers



Motivation

Single-user applications Multi-user applications

Smart Assistants

Customer Service

Language Learning

Voice-based Search

Meeting summaries Collaborative Learning

Cocktail-party Problem
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Problem Statement
Multi-talker speaker-attributed ASR

• Input: long unsegmented (possibly multi-channel) recording containing 
multiple speakers.


• Output:


• Transcription of the recording (speech recognition)


• Speaker attribution (diarization)


• Additional constraints: streaming, i.e., real-time transcription


• We specifically look at “meetings”: LibriCSS, AMI, AliMeeting
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Problem Statement
Corpora

Corpus Name LibriCSS [1] AMI [2] AliMeeting [3]

Session length 10 minutes 30-45 minutes 15-30 minutes

Total size of corpus 10 hours 100 hours 120 hours

Microphones available 7-channel circular array 2 linear arrays with 8 
channels each + headset 

mics

8-channel circular array 
+ headset mics

Number of speakers 8 4 2-4

Overlap ratio 0 to 40% ~20% ~35%

Language English English Mandarin

Simulated (replayed) Real meetings Real meetings
7



Problem Statement
Evaluation Metrics

Hello How are you doing?Hi, good afternoon.Reference:

Input:

Diarization:

ASR hypothesis: Hello Good afternoon. How are you cooking?

Diarization Error Rate (DER) Concatenated minimum permutation Word Error Rate (cpWER)
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Missed speech + False alarms + Speaker confusion

time (s)

Total speaking time

Hello How are you doing? Hi, good afternoon.

Hello How are you cooking? Good afternoon.

Concatenated reference:

Concatenated hypothesis:

Compute average WER for all permutations of speakers and return minimum



How to solve this problem?
Modular and end-to-end approaches
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Speaker 
Diarization

Speech 
Separation

Speech 
Recognition

Who spoke when?

Separate overlapping 
speech

Transcribe audio

KEY COMPONENTS

Modular

End-to-end

Offline Streaming

Pipeline CSS-based

TS-ASR

SURT

1 2

3
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Modular Perspective
Pipeline approach: the CHiME-6 challenge [4]
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Diarization Target-speaker 
extraction

Speech 
recognition

Speech 
recognition

• Multi-channel guided source separation (GSS)

• Unsupervised target-speaker extraction method

• Works well if segments are accurate

• Can leverage advances in single-speaker ASR methods

• Mismatch between train and test?

• Inaccurate segment boundaries can cause insertion/

deletion errors

• Need to assign overlapping speech to speakers



Modular Perspective
Overlap-aware diarization [5]

• Conventional diarization methods make single-speaker assumption: bad for 
both GSS and ASR modules


• Novel method for overlap assignment with spectral clustering


• Results on LibriCSS:
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Method DER cpWER

Spectral clustering 14.9 17.4

+ overlap assignment 11.3 14.3



Modular Perspective
Simultaneous systems based on CSS [6]

• Pipeline system is offline


• Needs special methods for overlap-aware diarization

12

💡 Use speech separation front-end



Modular Perspective
Simultaneous systems based on CSS [6]
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Diarization

Continuous 
Speech Separation

Speech 
recognition

• CSS works on “chunks” of speech, e.g., 2.4 seconds

• Separates into fixed number of output channels (usually 2)

• Streaming ASR can be performed on each output channel

Speech 
recognition

• No need for overlap detection and assignment

• Need to adapt* clustering algorithms for cross-stream clustering
*ongoing work



Modular Perspective
Simultaneous systems based on CSS [6]

• How does it compare with the pipeline system?


• Performance on LibriCSS:

14

Method DER cpWER

Pipeline system 11.3 14.3

CSS-based system 14.1 12.7



End-to-end Perspective
Separation-free approach with target-speaker ASR

• It is hard to train separation networks for partially overlapped recordings.


• Adds overhead since we do not need to produce separated audio


• Can we build “separation-free” systems?

15



End-to-end Perspective
Separation-free approach with target-speaker ASR
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Diarization

Target-speaker ASR

• Combines target-speaker extraction and ASR components

• Previous methods: SpeakerBeam, VoiceFilter

• Use transducer-based TS-ASR*

Speaker 
biasing

Target-speaker ASR

• Overlap-aware diarization, similar to “pipeline” system

• Extract speaker embedding and use for biasing the 

TS-ASR module *proposed



End-to-end Perspective
Separation-free approach with target-speaker ASR

• The TS-ASR based system is also offline since it depends on the diarization 
output


• How to build a fully end-to-end system for multi-talker ASR?

17



End-to-end Perspective
Continuous streaming multi-talker ASR with SURT [7]
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Unmixing

Streaming Unmixing and Recognition Transducer (SURT)

RNN-T

RNN-T

Speaker 
assignment

• Entire model is trained end-to-end

• Current model supports streaming multi-talker ASR without 

speaker assignment

• Speaker assignment: transcribe-to-diarize



Exercise: Fill in the Blanks
Benchmarking the systems on public corpora
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System LibriCSS AMI AliMeeting

Pipeline

CSS-based

TS-ASR

SURT

Originally for CHiME-6

Lot of work with LibriCSS

Exists in literature

No previous studies

Finished work

Previous work uses WSJ-Mix



Advances in SURT
Multi-channel models, graph-PIT, and self-supervised learning
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Unmixing

Streaming Unmixing and Recognition Transducer (SURT)

RNN-T

RNN-T

Speaker 
assignment

Use multi-channel input for “unmixing” using neural 
MVDR beamformer [8]

Use self-supervised encoders like Wav2Vec 2.0 [10]

1

2 Use more flexible training objectives like Graph-PIT 
instead of HEAT [9]
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Review
What we hope to achieve at the end of this thesis

• Formalize the multi-talker ASR task and review popular approaches from 
literature


• Benchmark the systems on public datasets and analyze pros and cons


• Propose new strategies for challenges within these systems (overlap-aware 
diarization, train-test mismatch for ASR, etc.)


• Develop transducer-based end-to-end multi-talker ASR models for 
continuous and streaming recognition

21
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Overlap-aware Spectral Clustering
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Speaker Diarization
“Clustering-based” systems
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• Key idea: formulate Diarization as a clustering problem


• Cluster small segments of audio


• Each cluster represents a distinct speaker

Basu, J., Khan, S., Roy, R., Pal, M., Basu, T., Bepari, M.S., & Basu, T.K. (2016). An overview of speaker diarization: Approaches, resources and challenges.

Tranter, S., & Reynolds, D. (2006). An overview of automatic speaker diarization systems. IEEE Transactions on Audio, Speech, and Language Processing.



Clustering-based diarization

…

…

…

Embedding extractor Pair-wise Scoring

Clustering 

(+ resegmentation)

Diarization labels

Affinity 

Speech Activity 
Detection

SAD extracts speech segments from recordings

26

Spectral energy-based

GMM-based

Hybrid HMM-DNN

End-to-end SAD



Clustering-based diarization
Embeddings extracted for small subsegments

…

…

…

Embedding extractor Pair-wise Scoring

Clustering 

(+ resegmentation)

Diarization labels

Affinity 

Speech Activity 
Detection
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Clustering-based diarization
Embeddings extracted for small subsegments

…

…

…

Embedding extractor Pair-wise Scoring

Clustering 

(+ resegmentation)

Diarization labels

Affinity 

Speech Activity 
Detection

i-vectors

x-vectors

d-vectors
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Dehak, N., et al (2011). Front-End Factor Analysis for Speaker Verification. IEEE Transactions on Audio, Speech, and Language Processing.

Snyder, D., et al. (2018). X-Vectors: Robust DNN Embeddings for Speaker Recognition. 2018 IEEE ICASSP.


Variani, E.,et al. (2014). Deep neural networks for small footprint text-dependent speaker verification. 2014 IEEE ICASSP.



Clustering-based diarization
Pair-wise scoring of subsegments

…

…

…

Embedding extractor Pair-wise Scoring

Clustering 

(+ resegmentation)

Diarization labels

Affinity 

Speech Activity 
Detection

PLDA scoring

Cosine scoring

29

Sell, G., & Garcia-Romero, D. 
(2014). Speaker diarization 

with PLDA i-vector scoring and 
unsupervised calibration. 2014 

IEEE Spoken Language 
Technology Workshop (SLT).



Clustering-based diarization
Clustering based on the affinity matrix, followed by optional resegmentation

…

…

…

Embedding extractor Pair-wise Scoring

Clustering 

(+ resegmentation)

Diarization labels

Affinity 

Speech Activity 
Detection

Agglomerative 
hierarchical clustering


Spectral clustering


Variational Bayes (VBx)

30

Daniel Garcia-Romero, David Snyder, Gregory Sell, Daniel Povey, and Alan McCree, “Speaker diarization using deep neural network embeddings,” ICASSP 2017.

Mireia Dîez, Lukas Burget, and Pavel Matejka, “Speaker diarization based on Bayesian HMM with eigenvoice priors,” Odyssey 2018.



Clustering-based diarization
How well does it perform?

31

• Winning system in DIHARD I (2018) and II (2019)


• DIHARD contains “hard” Diarization evaluation with recordings from several domains


• But Diarization error rates (DER) still high: 37% in DIHARD I and 27% in DIHARD II

Sell, G., et al. (2018). Diarization is Hard: Some Experiences and Lessons Learned for the JHU Team in the Inaugural DIHARD Challenge. INTERSPEECH 2018.

Landini, F., et al. (2020). BUT System for the Second Dihard Speech Diarization Challenge. IEEE ICASSP 2020.

Missed speech + False alarm + Speaker error

Total speaking time
DER  =



Clustering paradigm assumes 
single-speaker segments 

So overlapping speakers are completely ignored!

32

“Roughly 8% of the absolute error in our systems was from overlapping speech … it will likely require a complete rethinking of the diarization 
process … This is an important direction, but could not be addressed …”


- JHU team (2018)

“Given the current performance of the systems, the overlapped speech gains more relevance … more than 50% of the DER in our best systems … 
has to be addressed in the future …”


- BUT team (2019)



Overlap-aware spectral clustering

…

…

…

Embedding extractor Pair-wise Scoring

Overlap-aware spectral 
clustering

Diarization labels

Affinity 

Speech Activity DetectionOverlap 
Detector

33

Raj, D., Huang, Z., & 
Khudanpur, S. (2021). Multi-

class Spectral Clustering 
with Overlaps for Speaker 
Diarization. IEEE SLT 2021.



Overlap-aware spectral clustering
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N-G-W Spectral clustering

Diarization labels

Affinity matrix

Estimating no. of speakers

Overview of differences

• Estimate number of speakers (say, K)


• Compute Laplacian L of affinity matrix


• Apply K-means clustering on first K eigenvectors 

of L

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss, “On 
spectral clustering: Analysis and an algorithm,” NIPS, 2001

Regular spectral clustering 

(Ng-Jordan-Weiss algorithm):



Overlap-aware spectral clustering

35

N-G-W Spectral clustering

Diarization labels

Affinity matrix

Estimating no. of speakers

Overview of differences

• Estimate number of speakers (say, K)


• Compute Laplacian L of affinity matrix


• Apply K-means clustering on first K eigenvectors 

of L

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss, “On 
spectral clustering: Analysis and an algorithm,” NIPS, 2001

Cannot assign segment to 
multiple speakers

Regular spectral clustering 

(Ng-Jordan-Weiss algorithm):



Overlap-aware spectral clustering
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Overlap-aware spectral clustering

Diarization labels

Affinity matrix

Estimating no. of speakers

Overview of differences

Overlap Detector
Alternative formulation: 


multi-class spectral clustering

Yu, S., & Shi, J. Multiclass spectral clustering. ICCV 2003.



The basic clustering problem: a graph view

x-vector

Cosine similarity

37

New formulation for spectral clustering

Snyder, D., et al. (2018). X-Vectors: Robust DNN Embeddings for Speaker Recognition. 2018 IEEE ICASSP.




The basic clustering problem: a graph view

Edge weights within a group

Edge weights across groups

Speaker A

Speaker B

38

New formulation for spectral clustering



The basic clustering problem: a graph view

Edge weights within a group

Edge weights across groups
maximize

Speaker A

Speaker B

39

New formulation for spectral clustering



The basic clustering problem: a graph view

Edge weights within a group

Edge weights across groups
maximize

maximize ϵ(X) =
1
K

K

∑
k=1

XT
k AXk

XT
k DXk

subject to X ∈ {0,1}N×K,
X1K = 1N .

40

K speakers, N segments

New formulation for spectral clustering



The basic clustering problem: a graph view

Edge weights within a group

Edge weights across groups
maximize

maximize ϵ(X) =
1
K

K

∑
k=1

XT
k AXk

XT
k DXk

subject to X ∈ {0,1}N×K,
X1K = 1N .
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Affinity 

Diagonal matrix containing 
degree of nodes

New formulation for spectral clustering



The basic clustering problem: a graph view

maximize ϵ(X) =
1
K

K

∑
k=1

XT
k AXk

XT
k DXk

subject to X ∈ {0,1}N×K,
X1K = 1N .

#segments

#speakers

42

Final cluster assignment matrix

New formulation for spectral clustering



This problem is NP-hard!

maximize ϵ(X) =
1
K

K

∑
k=1

XT
k AXk

XT
k DXk

subject to X ∈ {0,1}N×K,
X1K = 1N .

Remove the discrete constraints to make the problem solvable

43

New formulation for spectral clustering



Relaxed problem has a set of solutions

maximize ϵ(X) =
1
K

K

∑
k=1

XT
k AXk

XT
k DXk

subject to X ∈ {0,1}N×K,
X1K = 1N .

Set of solutions to the relaxed problem

and its orthonormal 
transforms

44

Taking the Eigen-decomposition of D-1A

New formulation for spectral clustering



Now we need to discretize this solution!

Find a matrix which is discrete and also close 
to any one of the orthonormal 
transformations of the relaxed solution

and its orthonormal 
transforms

subject to X ∈ {0,1}N×K,
X1K = 1N .

45

New formulation for spectral clustering



Now we need to discretize this solution!

and its orthonormal 
transforms

46

Iterate until convergence

Non-maximal 
suppression

Singular Value 
Decomposition

New formulation for spectral clustering



Let us now make it overlap-aware
Suppose we have vOL

Discrete constraint is modified to include 
overlap detector output

and its orthonormal 
transforms

subject to X ∈ {0,1}N×K,
X1K = 1N + vOL .

47

Overlap Detector



Let us now make it overlap-aware
Modify non-maximal suppression to pick top 2 speakers

and its orthonormal 
transforms

48

Iterate until convergence

Modified non-maximal suppression

Singular Value 
Decomposition



Results on AMI Mix-Headset eval
12.0% relative improvement over spectral clustering baseline

System DER

Spectral clustering 26.9

AHC 28.3

VBx 26.2

Overlap-aware SC 24.0

Dîez et al., “Speaker diarization based on Bayesian HMM with 
eigenvoice priors,” Odyssey 2018.

Park et al., “Auto-tuning spectral clustering for speaker 
diarization using normalized maximum eigengap,” IEEE Signal 
Processing Letters, 2020.

Garcia-Romero et al., “Speaker diarization using deep neural 
network embeddings,” ICASSP 2017.

49

AMI data contains 4-speaker meetings



Results on AMI Mix-Headset eval
Comparable with other overlap-aware diarization methods

System DER

VB-based overlap assignment 23.8

Region proposal networks 25.5

Overlap-aware SC 24.0

Huang et al., “Speaker diarization with region proposal 
network,” ICASSP 2020.

Bullock, et al., “Overlap-aware diarization: resegmentation using 
neural end-toend overlapped speech detection,” ICASSP 2020.

Does not require matching training data or initialization with other diarization systems.
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Results: DER breakdown on AMI eval

System Missed 
speech

False alarm Speaker 
conf.

DER

AHC/PLDA 19.9 0.0 8.4 26.9

Spectral/cosine 19.9 0.0 7.0 28.3

VBx 19.9 0.0 6.3 26.2

VB-based overlap assignment 13.0 3.6 7.2 23.8

RPN 9.5 7.7 8.3 25.5

Overlap-aware SC 11.3 2.2 10.5 24.0
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Results: DER breakdown on AMI eval
Missed speech decreases significantly

System Missed 
speech

False alarm Speaker 
conf.

DER

AHC/PLDA 19.9 0.0 8.4 26.9

Spectral/cosine 19.9 0.0 7.0 28.3

VBx 19.9 0.0 6.3 26.2

VB-based overlap assignment 13.0 3.6 7.2 23.8

RPN 9.5 7.7 8.3 25.5

Overlap-aware SC 11.3 2.2 10.5 24.0
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Results: DER breakdown on AMI eval
Speaker confusion increases

System Missed 
speech

False alarm Speaker 
conf.

DER

AHC/PLDA 19.9 0.0 8.4 26.9

Spectral/cosine 19.9 0.0 7.0 28.3

VBx 19.9 0.0 6.3 26.2

VB-based overlap assignment 13.0 3.6 7.2 23.8

RPN 9.5 7.7 8.3 25.5

Overlap-aware SC 11.3 2.2 10.5 24.0
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Need more robust x-vector extractors

T-SNE plot of x-vector embeddings

Non-overlapping segments Overlapping segments
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Continuous Speech Separation
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What is continuous speech separation?

• Speech separation using neural networks works well for fixed number of 
speakers, e.g., separating short 2-speaker mixtures

56

Input mixed speech

Motivation

Separated speech



What is continuous speech separation?

• But what about arbitrary number of speakers? Problem: neural networks are 
trained with fixed number of outputs


• Or long-form recordings? Problem: OOM

57

Mixed speech with 3 speakers

Motivation

Separated speech

Long recording containing 3 speakers



What is continuous speech separation?

• Assumption: A small segment (say 2-3 seconds) will contain at most 2 
speakers


• Separate small chunks into fixed number of outputs and stitch

58

Idea: separate small chunks

Channel 1

Channel 2



• Problem: Output order may change across chunks, causing discontinuity


• Solution: use “overlapping” chunks and reorder masks based on shared 
portion to minimize cross-entropy

What is continuous speech separation?

59

Caveat: permutation problem between chunks

Chunk 1 Chunk 2
Channel 1

Channel 2

Chunk 1

Chunk 2

Channel 1

Channel 2

Chunk 3

Reorder 
and stitch

Channel 1

Channel 2

Channel 1

Channel 2

Stitch



CSS-based diarization
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Motivation
A different paradigm for overlap-aware diarization

1. It is hard to train a good overlap detector


• Data sparsity issue


• Need frame-level alignments


2. Speaker embedding extractors may not produce good representations of 
overlapping segments


3. For CSS-based systems, we already have access to separated audio streams

61



CSS-based diarization

62

DiarizationContinuous 
Speech Separation

• No need for overlap detection and assignment

• Speaker embedding extractors trained on single-speaker 

utterances work just fine


• Need to adapt clustering algorithms for cross-stream clustering



Adapting clustering algorithms

63

Sequence-agnostic clustering methods

Sliding window method with 
window size 1.5s and stride 0.75s

Speaker embedding 
extractor (x-vector)

Each segment is a ~256-dim vector

K-means

Spectral


Hierarchical

Cluster and merge adjacent segments



Adapting clustering algorithms
Sequence-agnostic clustering methods

Speaker embedding 
extractor (x-vector)

K-means

Spectral


Hierarchical

Apply sliding window 
independently on streams

Each segment is a ~256-dim vector

Cluster and merge adjacent segments

64



Adapting clustering algorithms
Sequence-agnostic clustering methods

65

• How does it compare with overlap assignment?


• Performance on LibriCSS:


• Cons: requires a well-trained CSS network

Method Miss F.Alarm Conf. DER

Spectral + OVL 3.8 2.2 5.3 11.3

CSS + Spectral 3.4 3.4 1.9 8.7



Adapting clustering algorithms
Sequence-dependent clustering methods

66

• These methods perform clustering over the sequential input


• Need special treatment to adapt to the case of separated streams


• Case study: VBx (Bayesian HMM clustering of x-vector sequences)



The VBx method for diarization
Preliminary: Variational Bayes

67

• Observation X and latent variable Z


• Need to compute posterior 


• Hard to compute the marginal term in the denominator


• So we will approximate the posterior with some distribution  

p(Z |X)

q(Z)

p(Z ∣ X) =
p(X ∣ Z)p(Z)

∫ p(X ∣ Z)p(Z)dZ



The VBx method for diarization
Preliminary: Variational Bayes

68

• Minimize the KL-divergence


• Here  is some family of distributions


• This is equivalent to maximizing the ELBO


• Mean-field approximation: 

Q

q*(Z) = argminq(Z)∈Q KL(q(Z) | |p(Z ∣ X))

ELBO(q) = 𝔼q(Z) [log p(X ∣ Z)] − KL(q(Z) | |p(Z))

Maximize the likelihood Keep it close to the prior

q(Z) =
m

∏
j=1

qj(zj)



The VBx method for diarization
Setup

69

• Discrete latent sequence of speakers 


• Observation: sequence of x-vectors 


•  is generated from  using a Bayesian Hidden Markov model

Z

X

X Z

z1 z2 z3 zT….. 
p(zt = s ∣ zt−1 = s′￼) = p(s ∣ s′￼)

s1
s2

p(x ∣ s) = 𝒩(x; Vys, I)

Z

XY



The VBx method for diarization
Variational inference

70

• Computing the posterior:


• Again hard because of marginal term in denominator, so use approximation


• Mean-field approximation: 


• Solved by maximizing the ELBO:

q(Z, Y) = q(Z)q(Y)

p(Z |X) = ∫ p(Z, Y |X)dY

ELBO(q) = 𝔼q(Z,Y) [log p(X ∣ Y, Z)] − 𝔼q(Y) [log
q(Y)
p(Y) ] − 𝔼q(Z) [log

q(Z)
p(Z) ]



Extending VBx for CSS output
Fully-coupled model

71

z1
1 , z2

1 z1
2 , z2

2 z1
3 , z2

3 z1
T, z2

T….. 

p(z1
t = s1, z2

t = s2 ∣ zt−1 = s′￼1, z2
t−1 = s′￼2) = p(s1, s2 ∣ s′￼1, s′￼2)

s1
s2

Z

X1

Y

p(x1, x2 ∣ s1, s2) = p(x1 ∣ s1)p(x2 ∣ s2)
= 𝒩(x1; Vys1

, I)𝒩(x2; Vys2
, I)

X2



Extending VBx for CSS output
State-decoupled model

72

….. 

p(s1, s2 ∣ s′￼1, s′￼2) = p(s1 |s′￼1)p(s2 |s′￼2)

s1
s2

Z

X2

Y

z2
1 z2

2 z2
3 z2

T

….. z1
1 z1

2 z1
3 z1

T

Simplifying assumption for transition model
X1



Target-speaker extraction with GSS
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What is target-speaker extraction?
Supervised and unsupervised methods

• Given an audio containing mixed speech, extract the speech of a target 
speaker


• Auxiliary information: enrollment audio or speaker embedding

74

Speaker embedding or 
enrollment audio (optional)

Input mixed speech



Guided source separation
Setup

• Let  be a multi-channel input signal in STFT domain, i.e., 


• We assume the following model of the signal:


• We want to estimate  for a given speaker 

Yt,f Yt,f ∈ ℂD

Xearly
t,f,k k

75

Yt,f = ∑
k

Xearly
t,f,k + ∑

k

Xtail
t,f,k + Nt,f

Sum of speaker signals

Sum of reverb tails

Noise



Guided source separation
Consists of 3 main steps

76

Yt,f = ∑
k

Xearly
t,f,k + ∑

k

Xtail
t,f,k + Nt,f

Sum of speaker signals

Sum of reverb tails

Noise

Yt,f

De-reverberation using Weighted 
Prediction Error (WPE)

Remove the late reverb

Mask estimation using complex 
angular central GMM (CACGMM)

Mask-based MVDR beamforming

Estimate T-F masks for all 
speakers and noise

Use T-F masks to extract 
desired signal from input



Guided source separation
Step 1: De-reverberation using WPE

77

Yearly
t,f = Y1

t,f − ĝH
f Yt−τ,f

Multi-channel linear regression

• Assume  for each T-F bin is modeled by a zero-mean complex Gaussian 
with variance 


• Parameters to estimate:  for every time-frequency and  for every 
frequency


• Use maximum likelihood estimation (iteratively solve for parameters)

Yearly
t,f

λt,f

λt,f gk



Guided source separation
Step 2: Mask estimation using CACGMMs

78

• Assume  for each T-F bin is modeled as a mixture of complex angular 
central Gaussians


• Here,  is a positive-definite Hermitian matrix that controls the CACG 


• Cannot directly run EM algorithm:


1. Need to know number of mixture components 


2. Permutation problem for speaker indices for different 

Ỹt,f

Bf,k

k

f

p(Ỹt,f) = ∑
k

πf,k𝒜(Ỹt,f; Bf,k)



Guided source separation
Step 2: Mask estimation using CACGMMs
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Diarization Target-speaker 
extraction

• Use diarization output! 


• Number of components = number of 
speakers + 1 (for noise)


• Fix the global speaker order according 
to diarization output



Guided source separation
Step 2: Mask estimation using CACGMMs
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• Apply E-M algorithm


• E-step: Compute state posteriors at each time-step


• M-step: Compute mixture weights and covariance


• Finally,  gives the T-F masks of all the speakers and noiseγt,f,k

γt, f,k =
πt, f,k |Bf,k |−1 (ỸH

t, f B−1Ỹt, f )−D

∑k′￼
πt, f,k′￼|Bf,k′￼|

−1 (ỸH
t, f B−1Ỹt, f )−D



Guided source separation
Step 3: Mask-based MVDR beamforming

81

• Signal consists of a combination of target and distortion


• Here,  is called the steering vector


• A beamformer tries to weight the sum of multi-channel signal into 
enhanced signal


• If weight of frequency bin is constant for all time steps, called time-invariant

d

Yt, f = dfSt, f + Nt, f

Ŝ = wHY, w ∈ ℂD×F



Guided source separation
Step 3: Mask-based MVDR beamforming

82

• MVDR beamformer: minimum variance distortionless response


• Minimize the power of the interfering signal while preserving the 
distortionless source signal


• Here,  is the covariance of the noisy STFT at frequency .ΦYY( f ) f

wMVDR( f ) = arg min wH( f )ΦYY( f )w( f )
w

s.t. w( f )Hd( f ) = 1



Guided source separation
Step 3: Mask-based MVDR beamforming
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γt,f,k

γt,f,n = ∑
k′￼≠k

γt,f,k′￼

Target mask

Distortion mask

Φk( f ) =
1
T ∑

t

γt, f,kỸt, f ỸH
t, f

Spatial covariance matrix for target
wk( f ) =

Φ−1
n ( f )Φk( f )eref

tr (Φ−1
n ( f )Φk( f ))

Beamforming vector: gives the weight 
assigned to each channel for every 

frequency

Φn( f ) =
1
T ∑

t

γt, f,nỸt, f ỸH
t, f

Spatial covariance matrix for noise

X̂t, f,k = Ỹt, f ⋅ wk( f )

Estimated signal for target k



Target-speaker ASR

84



What is target-speaker ASR?
Target-speaker ASR = target-speaker extraction + ASR

• Given an audio containing mixed speech, transcribe the utterances spoken 
by a target speaker


• Auxiliary information: enrollment audio or speaker embedding

85

Speaker embedding or 
enrollment audio

Input mixed speech Hello, my name is John



What is target-speaker ASR?
Two popular models

• Two popular methods for target-speaker ASR (similar idea)


1. SpeakerBeam (NTT, Japan)


2. VoiceFilter (Google)
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Delcroix, M., Žmolíková, K., Kinoshita, K., Ogawa, A., & Nakatani, T. (2018). Single Channel Target Speaker Extraction and Recognition with Speaker Beam. 2018 IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP), 5554-5558.

Wang, Q., Lopez-Moreno, I., Saglam, M., Wilson, K.W., Chiao, A., Liu, R., He, Y., Li, W., Pelecanos, J.W., Nika, M., & Gruenstein, A. (2020). VoiceFilter-Lite: Streaming Targeted Voice Separation for On-Device Speech 
Recognition. ArXiv, abs/2009.04323.



Target-speaker ASR
SpeakerBeam

• Use an “auxiliary network” that is trained jointly with the main network, which 
provides speaker adaptation weights.

87

Main network


HMM state posteriors

Input mixed speech

Speaker adaptation layer
Auxiliary 
network

Enrollment audio



Target-speaker ASR
VoiceFilter

• Use pre-trained speaker embeddings as auxiliary information (instead of enrollment audio)


• Predict log Mel filterbanks instead of HMM state posteriors


• Techniques to avoid over-suppression

88

Main network


Log Mel filterbanks

Input mixed speech

Speaker adaptation layerd-vector

Speech 
recognition



Target-speaker ASR
VoiceFilter: avoiding over-suppression

• Voice filtering can cause false deletions when non-speech noise is present; 
known as “over-suppression”


• Use asymmetric L2 loss: penalize more if over-suppressed


• Use adaptive suppression strength:

89

Lasym = ∑
t

∑
f

(gasym (Scln(t, f ) − Senh(t, f ), α))
2 gasym(x, α) = {x  if x ⩽ 0

α ⋅ x  if x > 0

S(t)
out = w ⋅ S(t)

enh + (1 − w) ⋅ S(t)
in



Proposed approach
TS-ASR based on transducers

• Most industry-grade ASR is built on top of the transducer model


• Use this as the base model and integrate speaker adaptive layer
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Encoder
Predictor


Joiner


xtyu−1

hp
u he

t

Softmax

zt,u

p(yu ∣ x1:t, y1:u−1)

Encoder


Predictor


Joiner


xtyu−1

hp
u he

t

Softmax

zt,u

p(yu ∣ x1:t, y1:u−1)

Speaker adaptation layer dk

L2 loss



SURT for long recordings

91



Streaming Unmixing and Recognition Transducer
Basics

92

Streaming Unmixing and Recognition Transducer (SURT)

RNN-T

RNN-T

• Unmixing part separates mixed speech into 
non-overlapping features


• Made of convolutional layers

• Transducer model is used as the recognizer

• Output of unmixing component is fed into encoder

• Use HEAT loss over the transducer loss

Unmixing Recognition

MaskEnc

MixEnc

Lo
ss

Encoder
Predictor


Joiner


xtyu−1

hp
u he

t

Softmax

zt,u

p(yu ∣ x1:t, y1:u−1)



Streaming Unmixing and Recognition Transducer
PIT versus HEAT
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Model Model

Output 1 Output 2

Reference 2Reference 1

Output 1 Output 2

Reference 2Reference 1

Permutation invariant training (PIT) Heuristic error assignment training (HEAT)



Streaming Unmixing and Recognition Transducer
PIT versus HEAT

94

Permutation invariant training (PIT) Heuristic error assignment training (HEAT)

Requires computing all permutations of 
outputs and references

Requires computing only 1 permutation 
of output and reference

Can be prohibitively slow when N >> 2 
(exponential in N) Complexity increases linearly with N

For utterances with non-zero delay, PIT 
learns the same heuristic as HEAT



Streaming Unmixing and Recognition Transducer
Problem with vanilla SURT
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Streaming Unmixing and Recognition Transducer (SURT)

RNN-T

RNN-T

Unmixing Recognition

MaskEnc

MixEnc

Lo
ss

Vanilla SURT with LSTM-based transducers is not suitable for 
decoding long recordings



Streaming Unmixing and Recognition Transducer
Main changes to make it work
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Streaming Unmixing and Recognition Transducer (SURT)

RNN-T

RNN-T

Unmixing Recognition

MaskEnc

MixEnc

Lo
ss

• Use multi-turn training data

• Use curriculum learning

• Use dual-path modeling, i.e., DP-LSTM and DP-Transformer

• Use chunk width randomization for dual-path model training



Proposed advances
Multi-channel input

97

RNN-T

RNN-T

Unmixing Recognition

MaskEnc

MixEnc

Lo
ss

• Use multi-channel input with estimated masks

• Neural MVDR beamforming

Beamforming

Beamforming



Proposed advances
Training with graph-PIT
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RNN-T

RNN-T

Unmixing Recognition

MaskEnc

MixEnc G
ra

ph
-P

IT

• Use Graph-PIT for training instead of HEAT loss


• Provides more flexibility to the model (since we use several possible output 
assignments)



Proposed advances
Self-supervised learning
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Streaming Unmixing and Recognition Transducer (SURT)

RNN-T

RNN-T

Unmixing Recognition

MaskEnc

MixEnc

Lo
ss

Encoder
Predictor


Joiner


xtyu−1

hp
u he

t

Softmax

zt,u

p(yu ∣ x1:t, y1:u−1)

• Use pre-trained SSL encoder as the encoder 
for the RNN-T component

Wav2vec 2.0

HuBERTWavLM
Mockingjay

• Mismatch between features estimated by 
unmixer vs. SSL encoder features


• How to solve this issue?



Fast and efficient SURT
Integration with k2 and icefall
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https://github.com/k2-fsa/k2

https://github.com/k2-fsa/icefall

• Monotonic RNN-T topology: emit at most 1 label per time step


• Stateless decoder: replace LSTM with Conv1D


• Pruned joint network to avoid OOM


• Allows fast decoding and lattice generation with WFST

https://github.com/k2-fsa/k2
https://github.com/k2-fsa/icefall


How to perform diarization with SURT?
Endpoint detection
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Streaming Unmixing and Recognition Transducer (SURT)

RNN-T

RNN-T

Unmixing Recognition

MaskEnc

MixEnc

Channel 1

Channel 2

<st> <st>
Hello how are 

you?

Nice to meet you<st>

Thanks

• Predict <st> token to mark speaker turn changes

• Obtain timestamp of the <st> token from the lattice



How to perform diarization with SURT?
Speaker clustering

102

Streaming Unmixing and Recognition Transducer (SURT)

RNN-T

RNN-T

Unmixing Recognition

MaskEnc

MixEnc

Channel 1

Channel 2

• Mismatch between features from unmixer vs. 
pre-trained x-vector extractor


• How to jointly train embedding extractor with 
the SURT model?

Speaker embedding 
extractor

• Get speaker segments from endpoint detector

• Cluster embeddings obtained from the 

segments



Neural MVDR beamforming

103



Preliminary
Mask-based MVDR beamforming

104

• Signal consists of a combination of target and distortion


• Here,  is called the steering vector


• A beamformer tries to weight the sum of multi-channel signal into 
enhanced signal


• If weight of frequency bin is constant for all time steps, called time-invariant

d

Yt, f = dfSt, f + Nt, f

Ŝ = wHY, w ∈ ℂD×F



Preliminary
Mask-based MVDR beamforming

105

• MVDR beamformer: minimum variance distortionless response


• Minimize the power of the interfering signal while preserving the 
distortionless source signal


• Here,  is the covariance of the noisy STFT at frequency .ΦYY( f ) f

wMVDR( f ) = arg min wH( f )ΦYY( f )w( f )
w

s.t. w( f )Hd( f ) = 1



Preliminary
Mask-based MVDR beamforming
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γt,f,k

γt,f,n = ∑
k′￼≠k

γt,f,k′￼

Target mask

Distortion mask

Φk( f ) =
1
T ∑

t

γt, f,kỸt, f ỸH
t, f

Spatial covariance matrix for target
wk( f ) =

Φ−1
n ( f )Φk( f )eref

tr (Φ−1
n ( f )Φk( f ))

Beamforming vector: gives the weight 
assigned to each channel for every 

frequency

Φn( f ) =
1
T ∑

t

γt, f,nỸt, f ỸH
t, f

Spatial covariance matrix for noise

X̂t, f,k = Ỹt, f ⋅ wk( f )

Estimated signal for target k



ADL-MVDR
All deep learning MVDR

107

• Let us re-write the MVDR solution using the steering vector 


• So we mainly need to estimate  and  for each T-F bin. This can be done 
using neural networks (specifically, GRU-nets)

df

Φ−1
n d

wk( f ) =
Φ−1

n ( f )df

dH
f Φ−1

n ( f )df

dt, f = GRUnet(Φk(t, f ))

Φ−1
k (t, f ) = GRUnet(Φk(t, f ))

Zhang, Z., Yoshioka, T., Kanda, N., Chen, Z., Wang, X., Wang, D., & Eskimez, S.E. (2021). All-neural beamformer for continuous speech separation. ArXiv, abs/2110.06428.



Graph-PIT for training SURT 
models

108



Preliminary

• Speech separation using neural networks works well for fixed number of 
speakers, e.g., separating short 2-speaker mixtures

109

Input mixed speech

Continuous speech separation

Separated speech



Preliminary

• But what about arbitrary number of speakers? Problem: neural networks are 
trained with fixed number of outputs


• Or long-form recordings? Problem: OOM

110

Mixed speech with 3 speakers

Continuous speech separation

Separated speech

Long recording containing 3 speakers



Preliminary

• Assumption: A small segment (say 2-3 seconds) will contain at most 2 
speakers


• Separate small chunks into fixed number of outputs and stitch

111

Continuous speech separation

Channel 1

Channel 2



Preliminary

• Assumption: A small segment (say 2-3 seconds) will contain at most 2 
speakers


• Trained with permutation invariant training (PIT) loss


• Assumption may not hold in practice!


• Weaker assumption: at most 2 speakers at any instant of time

112

Continuous speech separation



Graph-PIT

• Weaker assumption: at most 2 speakers at any instant of time


• Allows to train on longer sessions with multiple speakers, as long as this 
assumption holds

113

Generalizing PIT for long recordings

Channel 1

Channel 2
Session containing 3 speakers



Graph-PIT

• Assign utterances to output channels such that overlapping utterances are 
on different channels


• Instance of graph coloring problem 

114

Generalizing PIT for long recordings

Session containing 3 speakers

• Each utterance is a node


• Overlapping utterances 
have an edge between 
them


• Color (here, shape) 
denotes assignment of 
utterance to channel



Graph-PIT

• For training, minimize loss over all assignments


• Provides additional flexibility to the separation network, i.e., does not 
penalize network for correctly separating utterances


• Problem: Graph coloring is NP-hard!

115

Generalizing PIT for long recordings



Graph-PIT

• “Aggregated” loss (e.g. a-SDR): aggregate over pairwise losses


• “Group” loss (e.g. sa-SDR): compute over the whole group

116

Different types of losses

Channel 1

Channel 2

Network output 1 possible reference

Channel 1

Channel 2



Graph-PIT

• “Aggregated” loss (e.g. a-SDR): aggregate over pairwise losses


• “Group” loss (e.g. sa-SDR): compute over the whole group

117

Different types of losses

ℒa−SDR(S, Ŝ) = −
1
C

C

∑
c=1

10 log10

sc
2

sc − ̂sc
2

=
1
C

C

∑
c=1

−10 log10

sc
2

sc − ̂sc
2

=
1
C

C

∑
c=1

ℒSDR (sc, ̂sc)

ℒsa−SDR(S, Ŝ) = − 10 log10

∑C
c=1 sc

2

∑C
c=1 sc − ̂sc

2



Graph-PIT

• Compute matrix of pairwise losses 


• Solve for best assignment using the Hungarian algorithm, 

M

𝒪(C3)
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For the case of aggregated loss

ℒa−SDR(S, Ŝ) = −
1
C

C

∑
c=1

10 log10

sc
2

sc − ̂sc
2

=
1
C

C

∑
c=1

−10 log10

sc
2

sc − ̂sc
2

=
1
C

C

∑
c=1

ℒSDR (sc, ̂sc) Not defined when source is empty (often the case for CSS)



Graph-PIT

• Group loss (e.g., SA-SDR) is more suitable for training on long sessions, 
which can contain empty sources.


• We can still use Hungarian algorithm if we can decompose the loss into 
, where  is a strictly monotonously 

increasing function.


• We can show that this is possible to do for SA-SDR loss, for example.

𝒥uPIT(Ŝ, S) = f( min
P∈𝒫C

Tr(MP, Ŝ, S)) f

119

For the case of group loss



Streaming Unmixing and Recognition Transducer
PIT versus HEAT

120

Model Model

Output 1 Output 2

Reference 2Reference 1

Output 1 Output 2

Reference 2Reference 1

Permutation invariant training (PIT) Heuristic error assignment training (HEAT)



Streaming Unmixing and Recognition Transducer
PIT versus HEAT

121

Permutation invariant training (PIT) Heuristic error assignment training (HEAT)

Requires computing all permutations of 
outputs and references

Requires computing only 1 permutation 
of output and reference

Can be prohibitively slow when N >> 2 
(exponential in N) Complexity increases linearly with N

For utterances with non-zero delay, PIT 
learns the same heuristic as HEAT



SURT objective

• HEAT is useful since it is feasible to train, rather than using PIT


• But it may be restraining, since we fix output assignment to channels


• Can we decompose underlying loss (RNN-T) such that we can use ideas from 
graph-PIT?

122

Graph-PIT?



RNN-Transducers

123



Preliminary
Connectionist Temporal Classification (CTC)

• Given input speech , find best word sequence 


• Need to compute 


• For training, loss is 


• For inference, 


• Problem: Do not know alignment between  and 

X Y

P(Y ∣ X)

−log P(Y ∣ X)

Ŷ = argmaxY P(Y ∣ X)

X Y

124

Encoder


xt

he
t

Softmax

p(yt ∣ x1:t)



Preliminary
Connectionist Temporal Classification (CTC)

• Problem: Do not know alignment between  and 


• Solution: sum over all possible alignments

X Y

125

Encoder


xt

he
t

Softmax

p(yt ∣ x1:t)

P(Y ∣ X) = ∑
A∈𝒜T

Y

P(A, Y ∣ X) = ∑
A∈𝒜T

Y

P(Y ∣ A, X)P(A ∣ X)

= ∑
A∈𝒜T

Y

P(Y ∣ A)P(A ∣ X) = ∑
A∈𝒜T

Y

P(A ∣ X)

= ∑
A∈𝒜T

Y

T

∏
t=1

P(at ∣ X)

Conditional independence of outputs



Preliminary
Connectionist Temporal Classification (CTC)

• What is an alignment?


• Example:  is of length 5,  is CAT


• Alignments: CCAAT, CATT, CAA T, etc.


• To get word from alignment, first collapse repetitions, then remove 


• Now we only need a way to sum over all such alignments


• Problem: Exponentially many alignments

X Y

ϵ ϵ

ϵ

126



Preliminary
Connectionist Temporal Classification (CTC)

• Problem: Exponentially many alignments


• Solution: dynamic programming


• Similar to HMM forward algorithm

127
https://distill.pub/2017/ctc/

—



Preliminary
Problems with CTC

1. Conditional independence of outputs


2. Output sequence must be shorter than input sequence

128



RNN-Transducer
Solves both of the problems with CTC

129

Encoder
Predictor


Joiner


xtyu−1

hp
u he

t

Softmax

zt,u

p(yu ∣ x1:t, y1:u−1)1. Conditional independence of outputs


• Use a predictor network (autoregressive 
model on previous outputs)


2. Output sequence must be shorter than 
input sequence


• Allow multiple outputs at each time step



RNN-Transducer
Monotonic alignments

130

C

A

T

ϕ ϕ ϕ

tu

αt,u

αt,u−1

αt−1,u

ht−1,u[ϕ]

ht,u−1[yu−1]

Forward algorithm



RNN-Transducer
Inference: greedy decoding

131

• Always pick the top output at each time step


• If  is generated, move to the next time step


• Otherwise, stay in the same time step and generate next label


• Problem: we do not want to stay in time frame t forever

ϕ



RNN-Transducer
Inference: beam search decoding

132

• Problem: we do not want to stay in time frame t forever


• Keep track of 2 sets of hypotheses: A and B


• A: set of hypotheses starting with non-black symbol, i.e., at time 


• B: set of hypotheses starting with blank, i.e., at time 


• Exit from  if B has W (beam size) hypotheses more probable than best 
hypothesis in A


• Move to ; empty A and move all B into A

t + 1

t

t

t + 1

Expand current time step until we have W hypotheses



RNN-Transducer
Inference: WFST decoding with k2

133

• Constrain number of outputs to at most  symbol per frame; after this, force 
transition to next time step


• For WFST decoding, , similar to hybrid or CTC decoding


• Also use Conv1D instead of LSTM in prediction network


• This allows us to use WFSTs for decoding since the number of decoder 
states is now finite.


• The FSA beam search algorithm generates a lattice, after which the highest 
probability label sequence can be searched in the lattice.

S

S = 1



RNN-Transducer
Other optimizations

134

• RNN-T is a memory hungry model; loss computation needs to store BxTxUxV 
logits (~4-5 G)


• Most log-prob mass is concentrated at only few tokens (say 5 tokens)


• Estimate which are these tokens using easy-to-compute method (simple 
addition of encoder and predictor representations)


• Then compute actual loss only for these 5 tokens: BxTxUx5



Self-supervised learning in speech

135



Motivation
From supervised to self-supervised

• Deep neural networks are good at learning from labeled data


• But not enough labeled data available (e.g. expensive to transcribe speech)


• Idea: pretext task and downstream task

136



Motivation
From supervised to self-supervised

137

Input transformation

Linear transformation

Input

Output

Supervised training
Convolutional

Recurrent

Self-attention
Can be trained on some “pretext” task

Fine-tune on downstream task



Pretext tasks
Prediction-based and reconstruction-based

• Prediction-based


• Predict future or masked tokens based on other tokens


• E.g.: language modeling


• Reconstruction-based


• Reconstruct clean input from noisy input


• E.g.: denoising autoencoders

138



Prediction-based training
Autoregressive Predictive Coding (APC)

139

Log-mel filterbanks

Chung, Yu-An and James R. Glass. “Generative Pre-Training for Speech with Autoregressive Predictive Coding.” ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2020): 3497-3501.

Autoregressive 
encoder

L1-loss
Objective: Predict the feature vector k steps into 
the future using an autoregressive model


Loss function: L1-loss



Prediction-based training
Contrastive Predictive Coding (CPC)
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Latent-space features

Oord, Aäron van den et al. “Representation Learning with Contrastive Predictive Coding.” ArXiv abs/1807.03748 (2018)

Autoregressive 
encoder

InfoNCE loss
Objective: Predict future in latent space for next k 
steps using an autoregressive model


Loss function: InfoNCE loss

Feature encoder (convolutional)

ct

xt+kxt ℒN = − 𝔼X log
fk (xt+k, ct)

∑xj∈X fk (xj, ct)



Prediction-based training
Wav2Vec

141

Latent-space features

Schneider, Steffen et al. “wav2vec: Unsupervised Pre-training for Speech Recognition.” INTERSPEECH (2019).

InfoNCE loss
Objective: Predict future in latent space for next k 
steps using an autoregressive model


Loss function: InfoNCE loss

Feature encoder (convolutional)

ct

xt+kxt ℒN = − 𝔼X log
fk (xt+k, ct)

∑xj∈X fk (xj, ct)

Convolutional 
encoder



Reconstruction-based training
Denoising Autoencoders (DAE)
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x̃ x′￼
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LDAE(θ, ϕ) =
1
n

n

∑
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(x(i) − fθ (gϕ (x̃(i))))
2

A compressed low-dimensional input representation

Fixed z



Reconstruction-based training
Variational Autoencoders (VAE)

143

x′￼

Pr
ob

ab
ili

st
ic

 
de

co
de

r 
Probabilistic 

encoder q
ϕ (z |x)
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Input
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input

x

Distribution with prior pθ(z)Variational inference

Sample 
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encoder

Leads to posterior collapse in practice

Kingma, Diederik P. and Max Welling. “Auto-Encoding Variational Bayes.” CoRR abs/1312.6114 (2014): n. pag.



Reconstruction-based training
Vector quantized Variational Autoencoders (VQ-VAE)

144

Idea: Learn a latent distribution on quantized input

Oord, Aäron van den et al. “Neural Discrete Representation Learning.” NIPS (2017).

Figure source: Original paper from van den Oord et al. (2017)



Prediction-based training (revisited)
VQ-APC

145

Log-mel filterbanks

Chung, Yu-An et al. “Vector-Quantized Autoregressive Predictive Coding.” INTERSPEECH (2020).

Autoregressive 
encoder

L1-loss

Objective: Predict vector-quantized feature vector 
k steps into the future using an autoregressive 
model


Loss function: L1-loss

Vector Quantization



Prediction-based training (revisited)
VQ-Wav2Vec

146
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InfoNCE loss Objective: Predict future in vector-quantized latent 
space for next k steps using an autoregressive 
model


Loss function: InfoNCE loss

ct

xt+kxt

ℒN = − 𝔼X log
fk (xt+k, ct)

∑xj∈X fk (xj, ct)

Convolutional 
encoder

Vector Quantization



Wav2vec 2.0
Incorporate ideas from BERT
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Objective: Predict masked vector-
quantized representation using 
transformer


Loss function: InfoNCE loss

ℒN = − 𝔼X log
fk (xt+k, ct)

∑xj∈X fk (xj, ct)

Figure source: Original paper from Baevski et al. (2020)



Other pretraining methods

• Combine prediction and reconstruction losses (Wav2vec-C)


• Predict masked cluster index instead of quantized representation (HuBERT)


• Online teacher-student learning with mean-teacher method (SPIRAL)
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Summary of approaches
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CPCAPC

Next-step prediction Auto-encoder reconstruction

VAE

VQ-APC VQ-VAE

+ vector 
quantization

+ vector 
quantization

L1 loss

InfoNCE

Wav2vec
+ conv.

VQ-wav2vec

+ vector 
quantization

L1 loss

+ Transformer


+ BERT-like masked 
prediction

Wav2vec 2.0 Wav2vec-CHuBERT

+ cluster prediction

- contrastive loss

SPIRAL

+ Teacher-student


