Listening to Multi-talker Conversations Modular and End-to-end Perspectives

Desh Raj Graduate Board Oral Examination May 4, 2022

① OCTOBER 20, 2020

Al outperforms humans in speech recognition

by Monika Landgraf, Karlsruhe Institute of Technology

https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-other

Microsoft claims new speech recognition record, achieving a super-human 5.1% error rate

BY TODD BISHOP on August 20, 2017 at 7:44 pm

		≡
oring)		
ased Noisy Stud	ent Training wi	th Libri–Light
Jan '21	Jul '21	Jan '22
		_
1	1	

Common ASR benchmarks

What changed?

- Conversational speech
- Far-field audio: noise and reverberation
- Overlapping speakers

4

Single-user applications

Smart Assistants

Customer Service

Language Learning

Voice-based Search

Multi-user applications

Meeting summaries

Collaborative Learning

Cocktail-party Problem

Problem Statement Multi-talker speaker-attributed ASR

multiple speakers.

Output:

- Transcription of the recording (speech recognition)
- Speaker attribution (diarization)
- Additional constraints: streaming, i.e., real-time transcription
- We specifically look at "meetings": LibriCSS, AMI, AliMeeting

• Input: long unsegmented (possibly multi-channel) recording containing

Problem Statement Corpora

Corpus Name	LibriCSS [1]	AMI [2]	AliMeeting [3]
Session length 10 minutes		30-45 minutes	15-30 minutes
Total size of corpus	10 hours	100 hours	120 hours
Microphones available	7-channel circular array	2 linear arrays with 8 channels each + headset	8-channel circular array + headset mics
Number of speakers 8		4	2-4
Overlap ratio 0 to 40%		~20%	~35%
Language	English	English	Mandarin
	Simulated (replayed)	Real meetings	Real meetings

Simulated (replayed)

7

Problem Statement Evaluation Metrics

Concatenated minimum permutation Word Error Rate (cpWER)

nated reference:	Hello How are you doing?	Hi, good afternoon
nated hypothesis:	Hello How are you cooking?	Good afternoon.

Compute average WER for all permutations of speakers and return minimum

How to solve this problem? Modular and end-to-end approaches

Offline ------ Streaming

KEY COMPONENTS

Speaker Diarization

Who spoke when?

Speech Recognition

Transcribe audio

Speech Separation

Separate overlapping speech

Modular Perspective Pipeline approach: the CHiME-6 challenge [4]

- Need to assign overlapping speech to speakers
 - Multi-channel **guided source separation** (GSS)
 - Unsupervised target-speaker extraction method
 - Works well if segments are accurate

n (GSS) method

- Can leverage advances in single-speaker ASR methods
- Mismatch between train and test?
- Inaccurate segment boundaries can cause insertion/ deletion errors

Modular Perspective Overlap-aware diarization [5]

- both GSS and ASR modules
- Novel method for overlap assignment with spectral clustering
- Results on **LibriCSS**:

Conventional diarization methods make single-speaker assumption: bad for

DER	cpWER
14.9	17.4
11.3	14.3

Modular Perspective Simultaneous systems based on CSS [6]

- Pipeline system is offline
- Needs special methods for overlap-aware diarization

Vise speech separation front-end

Modular Perspective Simultaneous systems based on CSS [6]

*ongoing work

Modular Perspective Simultaneous systems based on CSS [6]

- How does it compare with the pipeline system?
- Performance on **LibriCSS**:

Method

Pipeline system

CSS-based system

DER	cpWER	
11.3	14.3	
14.1	12.7	

End-to-end Perspective Separation-free approach with target-speaker ASR

- It is hard to train separation networks for partially overlapped recordings.
- Adds overhead since we do not need to produce separated audio
- Can we build "separation-free" systems?

End-to-end Perspective Separation-free approach with target-speaker ASR

- Overlap-aware diarization, similar to "pipeline" system
- Extract speaker embedding and use for biasing the TS-ASR module

- Combines target-speaker extraction and ASR components
- Previous methods: SpeakerBeam, VoiceFilter
- Use transducer-based TS-ASR*

*proposed

End-to-end Perspective Separation-free approach with target-speaker ASR

- output
- How to build a fully end-to-end system for multi-talker ASR?

• The TS-ASR based system is also offline since it depends on the diarization

End-to-end Perspective Continuous streaming multi-talker ASR with SURT [7]

Exercise: Fill in the Blanks Benchmarking the systems on public corpora

	System	LibriCSS	AMI	AliMeeting
Originally for CHiME-6	Pipeline			
Lot of work with LibriCSS	CSS-based			
Previous work uses WSJ-Mix	TS-ASR			
	SURT			

Exists in literature

No previous studies

Finished work

Advances in SURT Multi-channel models, graph-PIT, and self-supervised learning

Review What we hope to achieve at the end of this thesis

- Formalize the multi-talker ASR task and review popular approaches from literature
- Benchmark the systems on public datasets and analyze pros and cons
- Propose new strategies for challenges within these systems (overlap-aware diarization, train-test mismatch for ASR, etc.)
- Develop transducer-based end-to-end multi-talker ASR models for continuous and streaming recognition

References

- Chen, Zhuo et al. "Continuous Speech Separation: Dataset and Analysis." IEEE ICASSP 2020. 1.
- 2. Carletta, Jean et al. "The AMI Meeting Corpus: A Pre-announcement." MLMI (2005).
- 3. Yu, Fan et al. "M2MeT: The ICASSP 2022 Multi-Channel Multi-Party Meeting Transcription Challenge." ArXiv abs/ 2110.07393 (2021).
- Arora, Ashish et al. "The JHU Multi-Microphone Multi-Speaker ASR System for the CHiME-6 Challenge." ArXiv abs/ 4. 2006.07898 (2020).
- 5. **Raj, Desh** et al. "Multi-Class Spectral Clustering with Overlaps for Speaker Diarization." IEEE SLT 2021.
- **Raj, Desh** et al. "Integration of Speech Separation, Diarization, and Recognition for Multi-Speaker Meetings: 6. System Description, Comparison, and Analysis." IEEE SLT 2021.
- **Raj, Desh** et al. "Continuous Streaming Multi-Talker ASR with Dual-path Transducers." 2022 IEEE ICASSP. 7.
- Zhang, Zhuo-huang et al. "All-neural beamformer for continuous speech separation." ArXiv abs/2110.06428 8. (2021).
- 9. von Neumann, Thilo et al. "Graph-PIT: Generalized permutation invariant training for continuous separation of arbitrary numbers of speakers." Interspeech (2021).
- 10. Baevski, Alexei et al. "wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations." ArXiv abs/2006.11477 (2020).

Extra Slides

Overlap-aware Spectral Clustering

Speaker Diarization "Clustering-based" systems

- **Key idea:** formulate Diarization as a clustering problem
- Cluster small segments of audio
- Each cluster represents a distinct speaker

Basu, J., Khan, S., Roy, R., Pal, M., Basu, T., Bepari, M.S., & Basu, T.K. (2016). An overview of speaker diarization: Approaches, resources and challenges. Tranter, S., & Reynolds, D. (2006). An overview of automatic speaker diarization systems. IEEE Transactions on Audio, Speech, and Language Processing.

Clustering-based diarization SAD extracts speech segments from recordings

Clustering-based diarization Embeddings extracted for small subsegments

Clustering-based diarization Embeddings extracted for small subsegments

Clustering-based diarization Pair-wise scoring of subsegments

Sell, G., & Garcia-Romero, D. (2014). Speaker diarization with PLDA i-vector scoring and unsupervised calibration. 2014 IEEE Spoken Language Technology Workshop (SLT).

PLDA scoring Cosine scoring

Clustering-based diarization Clustering based on the affinity matrix, followed by optional resegmentation

Clustering-based diarization How well does it perform?

• Winning system in DIHARD I (2018) and II (2019)

DER =

- DIHARD contains "hard" Diarization evaluation with recordings from several domains
- But Diarization error rates (DER) still high: 37% in DIHARD I and 27% in DIHARD II

Missed speech + False alarm + Speaker error

Total speaking time

Sell, G., et al. (2018). Diarization is Hard: Some Experiences and Lessons Learned for the JHU Team in the Inaugural DIHARD Challenge. INTERSPEECH 2018. Landini, F., et al. (2020). BUT System for the Second Dihard Speech Diarization Challenge. *IEEE ICASSP 2020*.

Clustering paradigm assumes single-speaker segments

So overlapping speakers are completely ignored!

"Roughly 8% of the absolute error in our systems was from overlapping speech ... it will likely require a complete rethinking of the diarization process ... This is an important direction, but could not be addressed ..." - JHU team (2018)

"Given the current performance of the systems, the overlapped speech gains more relevance ... more than 50% of the DER in our best systems ... has to be addressed in the future ..." - BUT team (2019)

Overlap-aware spectral clustering

Overlap-aware spectral clustering Overview of differences

Regular spectral clustering

(Ng-Jordan-Weiss algorithm):

- Estimate number of speakers (say, *K*)
- Compute Laplacian *L* of affinity matrix
- Apply K-means clustering on first *K* eigenvectors of *L*

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss, "On spectral clustering: Analysis and an algorithm," NIPS, 2001

Overlap-aware spectral clustering Overview of differences

Regular spectral clustering

(Ng-Jordan-Weiss algorithm):

- Estimate number of speakers (say, K)
- Compute Laplacian *L* of affinity matrix
- Apply K-means clustering on first *K* eigenvectors of L

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss, "On spectral clustering: Analysis and an algorithm," NIPS, 2001

Overlap-aware spectral clustering Overview of differences

Alternative formulation:

multi-class spectral clustering

Yu, S., & Shi, J. Multiclass spectral clustering. ICCV 2003.

Cosine similarity

Snyder, D., et al. (2018). X-Vectors: Robust DNN Embeddings for Speaker Recognition. 2018 IEEE ICASSP.

Edge weights within a group

Edge weights across groups

Edge weights within a group

maximize

Edge weights across groups

maximize

maximize

subject to

Edge weights within a group

Edge weights across groups

$$\epsilon(X) = \frac{1}{K} \sum_{k=1}^{K} \frac{X_k^T A X_k}{X_k^T D X_k}$$
$$X \in \{0, 1\}^{N \times K},$$
$$X \mathbf{1}_K = \mathbf{1}_N.$$

K speakers, N segments

maximize

Edge weights within a group

Edge weights across groups

New formulation for spectral clustering **This problem is NP-hard!**

Remove the discrete constraints to make the problem solvable

New formulation for spectral clustering Relaxed problem has a set of solutions

Taking the Eigen-decomposition of D⁻¹A

and its orthonormal transforms

Set of solutions to the relaxed problem

New formulation for spectral clustering Now we need to discretize this solution!

Find a matrix which is **discrete** and also close to any one of the **orthonormal transformations** of the relaxed solution

New formulation for spectral clustering Now we need to discretize this solution!

and its orthonormal transforms

Iterate until convergence

Discrete constraint is modified to include overlap detector output

Let us now make it overlap-aware Modify non-maximal suppression to pick top 2 speakers

Iterate until convergence

and its orthonormal transforms

Results on AMI Mix-Headset eval 12.0% relative improvement over spectral clustering baseline

System	
Spectral clustering	
AHC	
VBx	
Overlap-aware SC	

AMI data contains **4-speaker meetings**

Results on AMI Mix-Headset eval Comparable with other overlap-aware diarization methods

Does not require **matching training data** or **initialization** with other diarization systems.

Results: DER breakdown on AMI eval

System	Missed speech	False alarm	Speaker conf.	DER
AHC/PLDA	19.9	0.0	8.4	26.9
Spectral/cosine	19.9	0.0	7.0	28.3
VBx	19.9	0.0	6.3	26.2
VB-based overlap assignment	13.0	3.6	7.2	23.8
RPN	9.5	7.7	8.3	25.5
Overlap-aware SC	11.3	2.2	10.5	24.0

Results: DER breakdown on AMI eval Missed speech decreases significantly

	System	Missed speech	False alarm	Speaker conf.	DER
	AHC/PLDA	19.9	0.0	8.4	26.9
	Spectral/cosine	19.9	0.0	7.0	28.3
	VBx	19.9	0.0	6.3	26.2
	VB-based overlap assignment	13.0	3.6	7.2	23.8
	RPN	9.5	7.7	8.3	25.5
	Overlap-aware SC	11.3	2.2	10.5	24.0

Results: DER breakdown on AMI eval Speaker confusion increases

System	Missed speech	False alarm	Speaker conf.	DER
AHC/PLDA	19.9	0.0	8.4	26.9
Spectral/cosine	19.9	0.0	7.0	28.3
VBx	19.9	0.0	6.3	26.2
VB-based overlap assignment	13.0	3.6	7.2	23.8
RPN	9.5	7.7	8.3	25.5
Overlap-aware SC	11.3	2.2	10.5	24.0

Need more robust x-vector extractors

T-SNE plot of x-vector embeddings

Continuous Speech Separation

What is continuous speech separation? Motivation

 Speech separation using neural networks works well for fixed number of speakers, e.g., separating short 2-speaker mixtures

Input mixed speech

Separated speech

What is continuous speech separation? **Motivation**

- trained with fixed number of outputs
- Or long-form recordings? **Problem:** OOM

Mixed speech with 3 speakers

Separated speech

• But what about arbitrary number of speakers? **Problem:** neural networks are

Long recording containing 3 speakers

57

What is continuous speech separation? Idea: separate small chunks

- Assumption: A small segment (say 2-3 seconds) will contain at most 2 speakers
- Separate small chunks into fixed number of outputs and stitch

What is continuous speech separation? **Caveat: permutation problem between chunks**

• Solution: use "overlapping" chunks and reorder masks based on shared portion to minimize cross-entropy

• **Problem**: Output order may change across chunks, causing discontinuity

Channel 1 Channel 2 Channel 2

CSS-based diarization

Motivation A different paradigm for overlap-aware diarization

- 1. It is hard to train a good overlap detector
 - Data sparsity issue
 - Need frame-level alignments
- overlapping segments

2. Speaker embedding extractors may not produce good representations of

3. For CSS-based systems, we already have access to separated audio streams

CSS-based diarization

- Need to **adapt clustering algorithms** for cross-stream clustering

 \mathbf{X}

Adapting clustering algorithms **Sequence-agnostic clustering methods**

- How does it compare with overlap assignment?
- Performance on **LibriCSS**:

Method	Miss	F.Alarm	Conf.	DER
Spectral + OVL	3.8	2.2	5.3	11.3
CSS + Spectral	3.4	3.4	1.9	8.7

• Cons: requires a well-trained CSS network

Adapting clustering algorithms Sequence-dependent clustering methods

- These methods perform clustering over the sequential input
- Need special treatment to adapt to the case of separated streams
- Case study: VBx (Bayesian HMM clustering of x-vector sequences)

The VBx method for diarization **Preliminary: Variational Bayes**

- Observation **X** and latent variable **Z**
- Need to compute **posterior** $p(\mathbf{Z} | \mathbf{X})$
- Hard to compute the marginal term in the denominator
- So we will approximate the posterior with some distribution $q(\mathbf{Z})$

$p(\mathbf{Z} \mid \mathbf{X}) = \frac{p(\mathbf{X} \mid \mathbf{Z})p(\mathbf{Z})}{\int p(\mathbf{X} \mid \mathbf{Z})p(\mathbf{Z})d\mathbf{Z}}$

The VBx method for diarization **Preliminary: Variational Bayes**

• Minimize the **KL-divergence**

 $q^*(\mathbf{Z}) = \operatorname{argmin}_{q(\mathbf{Z})}$

- Here Q is some family of distributions
- This is equivalent to maximizing the ELBO

$$\mathsf{ELBO}(q) = \mathbb{E}_{q(\mathbf{Z})} \left[\log \right]$$

• Mean-field approximation: $q(\mathbf{Z}) = \prod q_j(z_j)$ j=1

$$\mathbf{Z}_{l} \in \mathcal{Q} \mathsf{KL}(q(\mathbf{Z}) \mid p(\mathbf{Z} \mid \mathbf{X}))$$

The VBx method for diarization Setup

- Discrete latent sequence of speakers Z
- Observation: sequence of x-vectors **X**
- X is generated from Z using a Bayesian Hidden Markov model

The VBx method for diarization Variational inference

• Computing the **posterior**:

 $p(\mathbf{Z} | \mathbf{X}) = \int p(\mathbf{Z}, \mathbf{Y} | \mathbf{X}) d\mathbf{Y}$

- Mean-field approximation: $q(\mathbf{Z}, \mathbf{Y})$
- Solved by **maximizing the ELBO**:

 $\text{ELBO}(q) = \mathbb{E}_{q(\mathbf{Z},\mathbf{Y})} \left[\log p(\mathbf{X} \mid \mathbf{Y}, \mathbf{Z}) \right]$

Again hard because of marginal term in denominator, so use approximation

$$= q(\mathbf{Z})q(\mathbf{Y})$$

$$\mathbf{Z} - \mathbb{E}_{q(\mathbf{Y})} \left[\log \frac{q(\mathbf{Y})}{p(\mathbf{Y})} \right] - \mathbb{E}_{q(\mathbf{Z})} \left[\log \frac{q(\mathbf{Z})}{p(\mathbf{Z})} \right]$$

Extending VBx for CSS output Fully-coupled model

Extending VBx for CSS output State-decoupled model

Target-speaker extraction with GSS

What is target-speaker extraction? Supervised and unsupervised methods

- speaker
- Auxiliary information: enrollment audio or speaker embedding

Speaker embedding or enrollment audio (optional)

• Given an audio containing mixed speech, extract the speech of a **target**

Guided source separation Setup

- Let $\mathbf{Y}_{t,f}$ be a multi-channel input signal in STFT domain, i.e., $\mathbf{Y}_{t,f} \in \mathbb{C}^D$
- We assume the following model of the signal:

• We want to estimate $\mathbf{X}_{t,f,k}^{\text{early}}$ for a given speaker k

Guided source separation Consists of 3 main steps

Guided source separation **Step 1: De-reverberation using WPE**

- with variance $\lambda_{t,f}$
- Parameters to estimate: $\lambda_{t,f}$ for every time-frequency and \mathbf{g}_k for every frequency
- Use maximum likelihood estimation (iteratively solve for parameters)

 $\mathbf{Y}_{t,f}^{\text{early}} = \mathbf{Y}_{t,f}^{1} - \hat{\mathbf{g}}_{f}^{H} \mathbf{Y}_{t-\tau,f}$

Multi-channel linear regression

• Assume $\mathbf{Y}_{t,f}^{\text{early}}$ for each T-F bin is modeled by a zero-mean complex Gaussian

Guided source separation **Step 2: Mask estimation using CACGMMs**

central Gaussians

$$p(\tilde{\mathbf{Y}}_{t,f}) = \sum \pi_{f,k} \mathscr{A}(\tilde{\mathbf{Y}}_{t,f}; \mathbf{B}_{f,k})$$

k

- Here, $\mathbf{B}_{f,k}$ is a positive-definite Hermitian matrix that controls the CACG
- Cannot directly run EM algorithm:
 - 1. Need to know number of mixture components k
 - 2. Permutation problem for speaker indices for different f

• Assume $\mathbf{Y}_{t,f}$ for each T-F bin is modeled as a mixture of complex angular

Guided source separation **Step 2: Mask estimation using CACGMMs**

- Use diarization output!
- Number of components = number of speakers + 1 (for noise)
- Fix the global speaker order according to diarization output

Guided source separation Step 2: Mask estimation using CACGMMs

- Apply E-M algorithm
- E-step: Compute state posteriors a

posteriors at each time-step

$$\gamma_{t,f,k} = \frac{\pi_{t,f,k} |\mathbf{B}_{f,k}|^{-1} (\tilde{\mathbf{Y}}_{t,f}^{H} \mathbf{B}^{-1} \tilde{\mathbf{Y}}_{t,f})^{-D}}{\sum_{k'} \pi_{t,f,k'} |\mathbf{B}_{f,k'}|^{-1} (\tilde{\mathbf{Y}}_{t,f}^{H} \mathbf{B}^{-1} \tilde{\mathbf{Y}}_{t,f})^{-D}}$$

- M-step: Compute mixture weights and covariance
- Finally, $\gamma_{t,f,k}$ gives the **T-F masks** of all the speakers and noise

Guided source separation **Step 3: Mask-based MVDR beamforming**

Signal consists of a combination of target and distortion

- Here, **d** is called the steering vector
- A beamformer tries to weight the sum of multi-channel signal into enhanced signal

- $\mathbf{Y}_{t,f} = \mathbf{d}_f \mathbf{S}_{t,f} + \mathbf{N}_{t,f}$

 $\hat{\mathbf{S}} = \mathbf{w}^H \mathbf{Y}, \quad \mathbf{w} \in \mathbb{C}^{D \times F}$

• If weight of frequency bin is constant for all time steps, called time-invariant

Guided source separation **Step 3: Mask-based MVDR beamforming**

- MVDR beamformer: minimum variance distortionless response
- Minimize the power of the interfering signal while preserving the distortionless source signal

 $\mathbf{w}_{\mathrm{MVDR}}(f) = \arg\min$

S.

• Here, $\Phi_{YY}(f)$ is the covariance of the noisy STFT at frequency f.

$$\mathbf{w}^{\mathrm{H}}(f) \Phi_{\mathbf{Y}\mathbf{Y}}(f) \mathbf{w}(f)$$

$$\mathbf{t.} \quad \mathbf{w}(f)^{\mathrm{H}}\mathbf{d}(f) = 1$$

Guided source separation Step 3: Mask-based MVDR beamforming

 $\gamma_{t,f,k} \longrightarrow \Phi_k(f) = \frac{1}{T} \sum \gamma_{t,f,k} \tilde{\mathbf{Y}}_{t,f} \tilde{\mathbf{Y}}_{t,f}^H$ Target mask Spatial covariance matrix for target

 $\gamma_{t,f,n} = \sum_{\substack{k' \neq k}} \gamma_{t,f,k'} \longrightarrow \Phi_n(f) = \frac{1}{T} \sum_t \gamma_{t,f,n} \tilde{\mathbf{Y}}_{t,f} \tilde{\mathbf{Y}}_{t,f}^H$

Distortion mask

Spatial covariance matrix for noise

Estimated signal for target k

Target-speaker ASR

What is target-speaker ASR? **Target-speaker ASR = target-speaker extraction + ASR**

- by a target speaker
- Auxiliary information: enrollment audio or speaker embedding

nput mixed sc

Speaker embedding or enrollment audio

• Given an audio containing mixed speech, transcribe the utterances spoken

Hello, my name is John

What is target-speaker ASR? Two popular models

- Two popular methods for target-speaker ASR (similar idea)
 - 1. SpeakerBeam (NTT, Japan)
 - 2. VoiceFilter (Google)

Delcroix, M., Žmolíková, K., Kinoshita, K., Ogawa, A., & Nakatani, T. (2018). Single Channel Target Speaker Extraction and Recognition with Speaker Beam. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5554-5558.

Wang, Q., Lopez-Moreno, I., Saglam, M., Wilson, K.W., Chiao, A., Liu, R., He, Y., Li, W., Pelecanos, J.W., Nika, M., & Gruenstein, A. (2020). VoiceFilter-Lite: Streaming Targeted Voice Separation for On-Device Speech Recognition. ArXiv, abs/2009.04323.

Target-speaker ASR SpeakerBeam

provides speaker adaptation weights.

• Use an "auxiliary network" that is trained jointly with the main network, which

Target-speaker ASR VoiceFilter

- Predict log Mel filterbanks instead of HMM state posteriors
- Techniques to avoid over-suppression

• Use pre-trained speaker embeddings as auxiliary information (instead of enrollment audio)

Target-speaker ASR VoiceFilter: avoiding over-suppression

- known as "over-suppression"
- Use **asymmetric L2 loss**: penalize more if over-suppressed

$$L_{\text{asym}} = \sum_{t} \sum_{f} \left(g_{\text{asym}} \left(S_{\text{cln}}(t,f) - S_{\text{enh}}(t,f), \alpha \right) \right)^2 \qquad g_{\text{asym}}(x,\alpha) = \begin{cases} x & \text{if } x \leq 0 \\ \alpha \cdot x & \text{if } x > 0 \end{cases}$$

• Use adaptive suppression strength:

$$S_{\text{out}}^{(t)} = w \cdot S_{\text{enh}}^{(t)} + (1 - w) \cdot S_{\text{in}}^{(t)}$$

Voice filtering can cause false deletions when non-speech noise is present;

Proposed approach TS-ASR based on transducers

- Most industry-grade ASR is built on top of the transducer model
- Use this as the base model and integrate speaker adaptive layer

 $p(y_u \mid x_{1:t}, y_{1:u-1})$

SURT for long recordings

Streaming Unmixing and Recognition Transducer Basics

- Made of convolutional layers

- Use HEAT loss over the transducer loss

 X_t

Streaming Unmixing and Recognition Transducer PIT versus HEAT

Permutation invariant training (PIT)

Heuristic error assignment training (HEAT)

Streaming Unmixing and Recognition Transducer PIT versus HEAT

Permutation invariant training (PIT)

Requires computing all permutations of outputs and references

X

Can be prohibitively slow when N >> 2 (exponential in N)

Heuristic error assignment training (HEAT)

Requires computing only 1 permutation of output and reference

Complexity increases linearly with N

For utterances with non-zero delay, PIT learns the same heuristic as HEAT

Streaming Unmixing and Recognition Transducer Problem with vanilla SURT

Vanilla SURT with LSTM-based transducers is not suitable for decoding long recordings

Streaming Unmixing and Recognition Transducer Main changes to make it work

Proposed advances Multi-channel input

Use multi-channel input with estimated masks
Neural MVDR beamforming

97

Proposed advances Training with graph-PIT

- Use Graph-PIT for training instead of HEAT loss
- assignments)

• Provides more flexibility to the model (since we use several possible output

Proposed advances Self-supervised learning

Fast and efficient SURT Integration with k2 and icefall

- Monotonic RNN-T topology: emit at most 1 label per time step
- Stateless decoder: replace LSTM with Conv1D
- Pruned joint network to avoid OOM

Allows fast decoding and lattice generation with WFST

https://github.com/k2-fsa/k2 https://github.com/k2-fsa/icefall

How to perform diarization with SURT? Endpoint detection

• Predict <st> token to mark speaker turn changes

• Obtain timestamp of the <st> token from the lattice

How to perform diarization with SURT? **Speaker clustering**

Neural MVDR beamforming

Preliminary Mask-based MVDR beamforming

Signal consists of a combination of target and distortion

- Here, **d** is called the steering vector
- A beamformer tries to weight the sum of multi-channel signal into enhanced signal

• If weight of frequency bin is constant for all time steps, called time-invariant

- $\mathbf{Y}_{t,f} = \mathbf{d}_f \mathbf{S}_{t,f} + \mathbf{N}_{t,f}$

 $\hat{\mathbf{S}} = \mathbf{w}^H \mathbf{Y}, \quad \mathbf{w} \in \mathbb{C}^{D \times F}$

Preliminary Mask-based MVDR beamforming

- MVDR beamformer: minimum variance distortionless response
- Minimize the power of the interfering signal while preserving the distortionless source signal

 $\mathbf{w}_{\mathrm{MVDR}}(f) = \arg\min$

S.

• Here, $\Phi_{YY}(f)$ is the covariance of the noisy STFT at frequency f.

ance distortionless response ng signal while preserving the

$$\mathbf{w}^{\mathrm{H}}(f) \Phi_{\mathbf{Y}\mathbf{Y}}(f) \mathbf{w}(f)$$

$$\mathbf{t.} \quad \mathbf{w}(f)^{\mathrm{H}}\mathbf{d}(f) = 1$$

Preliminary Mask-based MVDR beamforming

 $\gamma_{t,f,k} \longrightarrow \Phi_k(f) = \frac{1}{T} \sum \gamma_{t,f,k} \tilde{\mathbf{Y}}_{t,f} \tilde{\mathbf{Y}}_{t,f}^H$ Target mask Spatial covariance matrix for target

 $\gamma_{t,f,n} = \sum_{\substack{k' \neq k}} \gamma_{t,f,k'} \longrightarrow \Phi_n(f) = \frac{1}{T} \sum_t \gamma_{t,f,n} \tilde{\mathbf{Y}}_{t,f} \tilde{\mathbf{Y}}_{t,f}^H$

Distortion mask

Spatial covariance matrix for noise

Estimated signal for target k

ADL-MVDR All deep learning MVDR

• Let us re-write the MVDR solution using the steering vector \mathbf{d}_f

• So we mainly need to estimate Φ_n^{-1} and **d** for each T-F bin. This can be done using neural networks (specifically, GRU-nets)

$\mathbf{w}_k(f) = \frac{\mathbf{\Phi}_n^{-1}(f)\mathbf{d}_f}{\mathbf{d}_f^H \mathbf{\Phi}_n^{-1}(f)\mathbf{d}_f}$

 $\mathbf{d}_{t,f} = \text{GRUnet}(\Phi_k(t,f))$

 $\Phi_k^{-1}(t,f) = \text{GRUnet}(\Phi_k(t,f))$

Zhang, Z., Yoshioka, T., Kanda, N., Chen, Z., Wang, X., Wang, D., & Eskimez, S.E. (2021). All-neural beamformer for continuous speech separation. ArXiv, abs/2110.06428.

Graph-PIT for training SURT models
speakers, e.g., separating short 2-speaker mixtures

Input mixed speech

Speech separation using neural networks works well for fixed number of

Separated speech

- trained with fixed number of outputs
- Or long-form recordings? **Problem:** OOM

Mixed speech with 3 speakers

Separated speech

• But what about arbitrary number of speakers? **Problem:** neural networks are

Long recording containing 3 speakers

110

- Assumption: A small segment (say 2-3 seconds) will contain at most 2 speakers
- Separate small chunks into fixed number of outputs and stitch

- Assumption: A small segment (say 2-3 seconds) will contain at most 2 speakers
- Trained with permutation invariant training (PIT) loss
- Assumption may not hold in practice!
- Weaker assumption: at most 2 speakers at any instant of time

Graph-PIT Generalizing PIT for long recordings

- Weaker assumption: at most 2 speakers at any instant of time
- Allows to train on longer sessions with multiple speakers, as long as this assumption holds

Graph-PIT Generalizing PIT for long recordings

- on different channels
- Instance of graph coloring problem

Session containing 3 speakers

• Assign utterances to output channels such that overlapping utterances are

- Each utterance is a node
- Overlapping utterances have an edge between them
- Color (here, shape) denotes assignment of utterance to channel

Graph-PIT Generalizing PIT for long recordings

- For training, minimize loss over all assignments
- Provides additional flexibility to the separation network, i.e., does not penalize network for correctly separating utterances

• **Problem:** Graph coloring is NP-hard!

Graph-PIT Different types of losses

- "Aggregated" loss (e.g. a-SDR): aggregate over pairwise losses
- "Group" loss (e.g. sa-SDR): compute over the whole group

Network output

gregate over pairwise losses te over the whole group

1 possible reference

Graph-PIT Different types of losses

• "Aggregated" loss (e.g. a-SDR): aggregate over pairwise losses • "Group" loss (e.g. sa-SDR): compute over the whole group

$$\mathcal{L}^{\mathbf{a}-\text{SDR}}(\mathbf{S}, \hat{\mathbf{S}}) = -\frac{1}{C} \sum_{c=1}^{C} 10 \log_{10} \frac{\|\mathbf{s}_{c}\|^{2}}{\|\mathbf{s}_{c} - \hat{\mathbf{s}}_{c}\|^{2}}$$
$$= \frac{1}{C} \sum_{c=1}^{C} \left(-10 \log_{10} \frac{\|\mathbf{s}_{c}\|^{2}}{\|\mathbf{s}_{c} - \hat{\mathbf{s}}_{c}\|^{2}}\right)$$
$$= \frac{1}{C} \sum_{c=1}^{C} \mathcal{L}^{\text{SDR}}(\mathbf{s}_{c}, \hat{\mathbf{s}}_{c})$$

$$\mathscr{L}^{\text{sa-SDR}}(\mathbf{S}, \hat{\mathbf{S}}) = -10 \log_{10} \frac{\sum_{c=1}^{C} \| \mathbf{s}_{c} \|^{2}}{\sum_{c=1}^{C} \| \mathbf{s}_{c} - \hat{\mathbf{s}}_{c} \|^{2}}$$

Graph-PIT For the case of aggregated loss

- Compute matrix of pairwise losses M
- Solve for best assignment using the Hungarian algorithm, $\mathcal{O}(C^3)$

$$\mathcal{L}^{\mathbf{a}-\text{SDR}}(\mathbf{S}, \hat{\mathbf{S}}) = -\frac{1}{C} \sum_{c=1}^{C} 10 \log_{10} \frac{\|\mathbf{s}_{c}\|^{2}}{\|\mathbf{s}_{c} - \hat{\mathbf{s}}_{c}\|^{2}}$$
$$= \frac{1}{C} \sum_{c=1}^{C} \left(-10 \log_{10} \frac{\|\mathbf{s}_{c}\|^{2}}{\|\mathbf{s}_{c} - \hat{\mathbf{s}}_{c}\|^{2}}\right)$$
$$= \frac{1}{C} \sum_{c=1}^{C} \mathcal{L}^{\text{SDR}}(\mathbf{s}_{c}, \hat{\mathbf{s}}_{c}) \text{ Not defined when the second se$$

nen source is empty (often the case for CSS)

Graph-PIT For the case of group loss

- which can contain empty sources.
- $\mathcal{J}^{uPIT}(\hat{\mathbf{S}}, \mathbf{S}) = f(\min \operatorname{Tr}(\mathbf{MP}, \hat{\mathbf{S}}, \mathbf{S})), \text{ where } f \text{ is a strictly monotonously}$ $\mathbf{P} \in \mathscr{P}_{C}$ increasing function.
- We can show that this is possible to do for SA-SDR loss, for example.

Group loss (e.g., SA-SDR) is more suitable for training on long sessions,

• We can still use Hungarian algorithm if we can decompose the loss into

Streaming Unmixing and Recognition Transducer PIT versus HEAT

Permutation invariant training (PIT)

Heuristic error assignment training (HEAT)

Streaming Unmixing and Recognition Transducer PIT versus HEAT

Permutation invariant training (PIT)

Requires computing all permutations of outputs and references

X

Can be prohibitively slow when N >> 2 (exponential in N)

Heuristic error assignment training (HEAT)

Requires computing only 1 permutation of output and reference

Complexity increases linearly with N

For utterances with non-zero delay, PIT learns the same heuristic as HEAT

SURT objective Graph-PIT?

- HEAT is useful since it is feasible to train, rather than using PIT
- But it may be restraining, since we fix output assignment to channels
- Can we decompose underlying loss (RNN-T) such that we can use ideas from graph-PIT?

RNN-Transducers

- Given input speech \mathbf{X} , find best word sequence \mathbf{Y}
- Need to compute $P(\mathbf{Y} \mid \mathbf{X})$
- For training, loss is $-\log P(\mathbf{Y} \mid \mathbf{X})$
- For inference, $\hat{\mathbf{Y}} = \operatorname{argmax}_{\mathbf{V}} P(\mathbf{Y} \mid \mathbf{X})$

• **Problem:** Do not know alignment between **X** and **Y**

$p(y_t | x_{1:t})$

- **Problem:** Do not know alignment between **X** and **Y**
- Solution: sum over all possible alignments

$$P(\mathbf{Y} \mid \mathbf{X}) = \sum_{A \in \mathscr{A}_{\mathbf{Y}}^{T}} P(A, \mathbf{Y} \mid \mathbf{X}) = \sum_{A \in \mathscr{A}_{\mathbf{Y}}^{T}} P(\mathbf{Y} \mid A, \mathbf{X})$$
$$= \sum_{A \in \mathscr{A}_{\mathbf{Y}}^{T}} P(\mathbf{Y} \mid A) P(A \mid \mathbf{X}) = \sum_{A \in \mathscr{A}_{\mathbf{Y}}^{T}} P(A \mid \mathbf{X})$$
$$= \sum_{A \in \mathscr{A}_{\mathbf{Y}}^{T}} \prod_{t=1}^{T} P(a_{t} \mid \mathbf{X})$$

Conditional independence of outputs

 \mathbf{X}) $P(A \mid \mathbf{X})$

X)

 $p(y_t | x_{1:t})$

- What is an **alignment**?
- Example: X is of length 5, Y is CAT
- Alignments: CCAAT, ϵ CATT, CAA ϵ T, etc.
- To get word from alignment, first collapse repetitions, then remove ϵ
- Now we only need a way to sum over all such alignments
- **Problem:** Exponentially many alignments

- **Problem:** Exponentially many alignments
- **Solution:** dynamic programming
- Similar to HMM forward algorithm

Node (s, t) in the diagram represents $\alpha_{s,t}$ – the CTC score of the subsequence $Z_{1:s}$ after t input steps.

https://distill.pub/2017/ctc/

Preliminary **Problems with CTC**

- 1. Conditional independence of outputs
- 2. Output sequence must be shorter than input sequence

RNN-Transducer Solves both of the problems with CTC

- 1. Conditional independence of outputs
 - Use a predictor network (autoregressive model on previous outputs)
- 2. Output sequence must be shorter than input sequence
 - Allow multiple outputs at each time step

RNN-Transducer Monotonic alignments

Forward algorithm

RNN-Transducer Inference: greedy decoding

- Always pick the top output at each time step
- If ϕ is generated, move to the next time step
- Otherwise, stay in the same time step and generate next label

• **Problem**: we do not want to stay in time frame t forever

-

RNN-Transducer Inference: beam search decoding

- **Problem**: we do not want to stay in time frame t forever
- Keep track of 2 sets of hypotheses: A and B
 - A: set of hypotheses starting with non-black symbol, i.e., at time t + 1
 - B: set of hypotheses starting with blank, i.e., at time t
- Exit from t if B has W (beam size) hypotheses more probable than best hypothesis in A Expand current time step until we have W hypotheses
- Move to t + 1; empty A and move all B into A

RNN-Transducer Inference: WFST decoding with k2

- Constrain number of outputs to at most *S* symbol per frame; after this, force transition to next time step
- For WFST decoding, S = 1, similar to hybrid or CTC decoding
- Also use Conv1D instead of LSTM in prediction network
- This allows us to use WFSTs for decoding since the number of decoder states is now finite.
- The FSA beam search algorithm generates a lattice, after which the highest probability label sequence can be searched in the lattice.

RNN-Transducer Other optimizations

- logits (~4-5 G)
- Most log-prob mass is concentrated at only few tokens (say 5 tokens)
- addition of encoder and predictor representations)
- Then compute actual loss only for these 5 tokens: BxTxUx5

RNN-T is a memory hungry model; loss computation needs to store BxTxUxV

• Estimate which are these tokens using easy-to-compute method (simple

Self-supervised learning in speech

Motivation From supervised to self-supervised

- Deep neural networks are good at learning from labeled data
- But not enough labeled data available (e.g. expensive to transcribe speech)
- Idea: pretext task and downstream task

Motivation From supervised to self-supervised

Fine-tune on downstream task <

Supervised training

Can be trained on some "pretext" task

Pretext tasks **Prediction-based and reconstruction-based**

Prediction-based

- Predict future or masked tokens based on other tokens
- E.g.: language modeling
- Reconstruction-based
 - Reconstruct clean input from noisy input
 - E.g.: denoising autoencoders

Prediction-based training Autoregressive Predictive Coding (APC)

Chung, Yu-An and James R. Glass. "Generative Pre-Training for Speech with Autoregressive Predictive Coding." ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2020): 3497-3501.

Objective: Predict the feature vector k steps into the future using an autoregressive model

Loss function: L1-loss

Prediction-based training Contrastive Predictive Coding (CPC)

Oord, Aäron van den et al. "Representation Learning with Contrastive Predictive Coding." ArXiv abs/1807.03748 (2018)

Objective: Predict future in *latent space* for next k steps using an autoregressive model

Loss function: InfoNCE loss

res
$$\mathscr{L}_{N} = -\mathbb{E}_{X}\left[\log \frac{f_{k}\left(x_{t+k}, c_{t}\right)}{\sum_{x_{j} \in X} f_{k}\left(x_{j}, c_{t}\right)}\right]$$

Feature encoder (convolutional)

Prediction-based training Wav2Vec

Schneider, Steffen et al. "wav2vec: Unsupervised Pre-training for Speech Recognition." INTERSPEECH (2019).

Objective: Predict future in *latent space* for next k steps using an autoregressive model

Loss function: InfoNCE loss

$$\mathscr{L}_{N} = -\mathbb{E}_{X} \left[\log \frac{f_{k}\left(x_{t+k}, c_{t}\right)}{\sum_{x_{j} \in X} f_{k}\left(x_{j}, c_{t}\right)} \right]$$

Feature encoder (convolutional)

Reconstruction-based training Denoising Autoencoders (DAE)

Reconstruction-based training Variational Autoencoders (VAE)

Kingma, Diederik P. and Max Welling. "Auto-Encoding Variational Bayes." CoRR abs/1312.6114 (2014): n. pag.

Leads to posterior collapse in practice

Reconstruction-based training Vector quantized Variational Autoencoders (VQ-VAE)

Oord, Aäron van den et al. "Neural Discrete Representation Learning." NIPS (2017).

Idea: Learn a latent distribution on quantized input

Figure source: Original paper from van den Oord et al. (2017)
Prediction-based training (revisited) VQ-APC

Chung, Yu-An et al. "Vector-Quantized Autoregressive Predictive Coding." INTERSPEECH (2020).

Objective: Predict vector-quantized feature vector k steps into the future using an autoregressive model

Loss function: L1-loss

Prediction-based training (revisited) VQ-Wav2Vec

Baevski, Alexei et al. "vq-wav2vec: Self-Supervised Learning of Discrete Speech Representations." ArXiv abs/1910.05453 (2020)

Objective: Predict future in vector-quantized *latent space* for next k steps using an autoregressive model

Loss function: InfoNCE loss

$$\mathscr{L}_{N} = -\mathbb{E}_{X}\left[\log\frac{f_{k}\left(x_{t+k}, c_{t}\right)}{\sum_{x_{j} \in X} f_{k}\left(x_{j}, c_{t}\right)}\right]$$

Wav2vec 2.0 Incorporate ideas from BERT

Baevski, Alexei et al. "wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations." ArXiv abs/2006.11477 (2020).

Figure source: Original paper from Baevski et al. (2020)

Objective: Predict **masked** vectorquantized representation using transformer

Loss function: InfoNCE loss

$$\mathscr{L}_{N} = -\mathbb{E}_{X} \left[\log \frac{f_{k}\left(x_{t+k}, c_{t}\right)}{\sum_{x_{j} \in X} f_{k}\left(x_{j}, c_{t}\right)} \right]$$

Other pretraining methods

- Combine prediction and reconstruction losses (Wav2vec-C)
- Predict masked cluster index instead of quantized representation (HuBERT)
- Online teacher-student learning with mean-teacher method (SPIRAL)

Summary of approaches

