
Desh Raj

April 14, 2023

FLASH attention
Or, why you should migrate to PyTorch 2.0

1

2

Same group that developed S4 architecture

Read: https://hazyresearch.stanford.edu/blog/2023-03-27-long-learning

Questionnaire
Before we begin…

• Do you use Transformer-based models?

• Do you use PyTorch for training your models?

• Why are Transformers better at modeling sequence (compared to RNNs or
convolutional layers)?

• What is the time complexity for self-attention?

• What is the space complexity for self-attention? (Other than inputs, output)

3

What about “efficient” transformers?
Long line of research to approximate self-attention

• Low-rank approximation of attention matrix

• Linformer, Nystromformer

• Local-global attention

• Longformer, Big Bird, Long-short transformer

• Softmax as a kernel

• Transformers are RNNs, Performers

4

https://desh2608.github.io/2021-07-11-linear-transformers/

What about “efficient” transformers?
Long line of research to approximate self-attention

• All of these methods try to reduce time-complexity of self-attention

• But lower time-complexity does not really result in faster training/inference
wall clock time on GPUs

• Approximations also lead to worse performance

• This is why these methods are not widely used

• What we want: FAST + EXACT self-attention
5

Multi-head self-attention
The “work-horse” of transformers

6

https://jalammar.github.io/illustrated-transformer/

Usually also: Masking, Dropout

Self-attention on the GPU
How is it implemented

7

S = QKT ∈ ℝN×N

Matmul

S′￼ = mask(S)

Masking

P = softmax(S′￼)

Softmax

P′￼ = dropout(P)

Dropout

z = P′￼V ∈ ℝN×d

Matmul

• Which of these operations are the most time-consuming on the GPU?

Self-attention on the GPU
Which operations are the slowest?

8

S = QKT ∈ ℝN×N

Matmul

S′￼ = mask(S)Masking

P = softmax(S′￼)Softmax

P′￼ = dropout(P)Dropout

z = P′￼V ∈ ℝN×d

Matmul

This seems counter-intuitive
GPU memory hierarchy

9

P′￼ = dropout(P)

GPU SRAM

GPU HBM (or
DRAM)

Read Write

Self-attention on the GPU

10

S = QKT ∈ ℝN×N

Matmul

S′￼ = mask(S)Masking

P = softmax(S′￼)Softmax

P′￼ = dropout(P)Dropout

z = P′￼V ∈ ℝN×d

Matmul

N*(N+d) N*d

N*N N*N

N*N N*N

N*N N*N

2*N*d N*N

Read Write

How can we speed-up self-attention?
Reduce number of read/write from HBM to SRAM

• Basically we want to avoid creating the big attention matrix which is of N^2
size.

• But there are 2 problems?

• Problem 1: How to compute softmax without the entire sequence?

• Problem 2: How to compute gradients for back-propagation?

11

Solution

• Problem 1: solved by TILING

• Problem 2: solved by RECOMPUTATION

12

Tiling to solve Problem 1
Block-wise computation of softmax

13

x

max(x) = m

f(x) = [ex1−m, …, ex2N−m]

l(x) = ∑
i

f(x)i

softmax(x) =
f(x)
l(x)

Tiling to solve Problem 1
Block-wise computation of softmax

14

x

max(x1) = m1

f(x1) = [ex1−m1, …, exN−m1]

l(x1) = ∑
i

f(x1)i
x1 x2

max(x2) = m2

f(x2) = [exN+1−m2, …, ex2N−m2]

l(x2) = ∑
i

f(x2)i

Tiling to solve Problem 1
Block-wise computation of softmax

15

x

max(x) = m = max(m1, m2)

f(x) = [ex1−m, …, ex2N−m]
= [ex1−m1+m1−m, …, ex2N−m2+m2−m]
= [em1−m ⋅ ex1−m1, …, em2−m ⋅ ex2N−m2]
= [em1−m ⋅ f(x1), em2−m ⋅ f(x2)]

l(x) = em1−m ⋅ l(x1) + em2−m ⋅ l(x2)

x1 x2

Tiling to solve Problem 1
Block-wise computation of self-attention output

16

Recomputation to solve Problem 2
How do we get gradients for back-prop

17

S = QKT ∈ ℝN×N S′￼ = mask(S) P = softmax(S′￼) P′￼ = dropout(P) z = P′￼V ∈ ℝN×d

• Need to compute gradients with respect to Q, K, V

• In original implementation, we will need to store all intermediate matrices.

• But in new implementation, we don’t have these big intermediate matrices.

Recomputation to solve Problem 2
How do we get gradients for back-prop

18

S = QKT ∈ ℝN×N S′￼ = mask(S) P = softmax(S′￼) P′￼ = dropout(P) z = P′￼V ∈ ℝN×d

• It can be shown through some matrix calculus that we can compute
derivatives of Q, K, V without the intermediates, by using the stored statistics

 and .

• This requires recomputing some things, but it is fast in SRAM.

• Total FLOPs increases, but wall clock time decreases.

m l

Results
Run-time for GPT-2

19

FLASH attention has more FLOPs but much lower runtime due to less HBM access.

Results
Faster training with FLASH attention

20

Performance is same because there is no approximation.

Results
Performance on Long Range Arena (LRA) benchmark

21

Performance is better because other methods use approximation.

Results
Modeling longer sequences

22

We can use longer contexts since we don’t require quadratic memory.

So what does it have to do with PyTorch?

• PyTorch 2.0 has native support for FLASH attention!

• Caveat: attention masks are not supported yet.

23

https://pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial.html

