FLASH attention

Or, why you should migrate to PyTorch 2.0

Desh Raj
April 14, 2023

FLASHATTENTION: Fast and Memory-Efficient Exact Attention
with [O-Awareness

Tri Dao', Daniel Y. Fu', Stefano Ermon', Atri Rudra*, an o Re'

"Department of Computer Science, Stanford Unlver31ty —N
iDepa,rtment of Computer Science and Engineering, University at Buffalo, SUNY

{trid,danfu}@cs.stanford.edu, ermon@stanford.edu, atri@buffalo.edu,
chrismre@cs.stanford.edu

Same group that developeoi S4 architecture

Read: https://hazyresearch.stanford.edu/blog/2023-03-27-long-learning

2

Questionnaire

Before we begin...

® Do you use Transformer-based models?
® Do you use PyTorch for training your models?

® \Why are Transformers better at modeling sequence (compared to RNNs or
convolutional layers)?

® \What is the time complexity for self-attention?

® \What is the space complexity for self-attention? (Other than inputs, output)

What about “efficient” transformers?

Long line of research to approximate self-attention

® | ow-rank approximation of attention matrix

® |informer, Nystromformer
® | ocal-global attention

® | ongformer, Big Bird, Long-short transformer
® Softmax as a kernel

® Transtormers are RNNs, Performers

https://desh2608.github.io/2021-07-11-linear-transformers/

4

What about “efficient” transformers?

Long line of research to approximate self-attention

o All of these methods try to reduce time-complexity ot self-attention

® But lower time-complexity does not really result in taster training/inference
wall clock time on GPUs

® Approximations also lead to worse performance

® Thisis why these methods are not widely used

e \What we want: FAST + EXACT self-attention

5

Multi-head self-attention

The “"work-horse” of transformers

X Wwa Q Q T
X = X
softmax()
Vg
X
y _ —
X

Usually also: Masking, Dropout

https://jalammar.github.io/illustrated-transformer/

6

Self-attention on the GPU

How is it implemented

S = QKT e RN ey S’ = mask(S) P = softmax(S’) ~-—% P’=dropout(P) -~ z=PV e RAXd

Matmul Masking Softmax Dropout Matmul

o Which of these operations are the most time-consuming on the GPU?

Self-attention on the GPU

Which operations are the slowest?

Matmul

Dropout

Softmax

Masking

Matmul

z =PV e RV

P’ = dropout(P)

P = softmax(S’)

S’ = mask(S)

S = QK! € RV

Attention on GPT-2

1 Matmul

15
] Dropout
£10
P] Softmax
£
- c Fused
Mask Kernel
m—

] Matmul

PyTorch FlashAttention

This seems counter-intuitive
GPU memory hierarchy

P’ = dropout(P)

HBEM: 1.5TB/s (40 GB)
GPU SRAM

: 12.8 GB/s

Memory Hierarchy with
Bandwidth & Memory Size

Self-attention on the GPU
Read Write

Matmul z =PV e R N*(N+d) N*d .
Attention on GPT-2

1 Matmul
Drgpgut P’ = dropout(P) N*N N*N 15

] Dropout

—
-

Softmax P = SOftmaX(S/) N*N N*N] SOftmaX

Fused
Mask Kernel

1

Time (ms)

U

Masking | §'=mask() NN NN

T 9

] Matmul

PyTorch FlashAttention

How can we speed-up self-attention?
Reduce number of read/write from HBM to SRAM

® Basically we want to avoid creating the big attention matrix which is of NA2
size.

® But there are 2 problems?
® Problem 1: How to compute softmax without the entire sequence?

® Problem 2: How to compute gradients for back-propagation?

11

Solution

® Problem 1: solved by TILING

® Problem 2: solved by RECOMPUTATION

12

Tiling to solve Problem 1

Block-wise computation of softmax

max(X) = m

fix)
[(X)

f(x) = [en™, ..., en™"] softmax(x) =

(%) = D fx),

Tiling to solve Problem 1

Block-wise computation of softmax

max(x') = m, max(x?) = m,

X fix) = [en™™, e f(X) = [evnTT, L e

D =) A, I(x?) =) fix?),
X! x° i i

14

Tiling to solve Problem 1

Block-wise computation of softmax

max(x) = m = max(m, m,)

fx) = [en™, ..., e
X — [exl—m1+m1—m’ o e oNT1 mz—m]
= [T . eMT e . et

= [em = fix!), e)]

[(x) = e™™ . [(x)) + ™™ . [(x?)

15

Tiling to solve Problem 1

Block-wise computation of self-attention output

Outer Loop

K:dxN

Copy Block to SRAM
Outer Loop

Compute Block
on SRAM

Inner Loop
doo 431N

doo1 i12uuj

sm(QKV: Nxd

Inner Loop

FlashAttention

16

Recomputation to solve Problem 2

How do we get gradients for back-prop

S = QK' € R =3 S’ = mask(S)

P = softmax(S") —% P’ =dropout(P) —% z =PV e R

® Need to compute gradients with respectto Q, K, V
® |n original implementation, we will need to store all intermediate matrices.

® Butin new implementation, we don't have these big intermediate matrices.

17

Recomputation to solve Problem 2

How do we get gradients for back-prop

S = QK' € R =3 S’ = mask(S)

P = softmax(S") —% P’ =dropout(P) —% z =PV e R

® |t can be shown through some matrix calculus that we can compute
derivatives of Q, K, V without the intermediates, by using the stored statistics

m and .

® This requires recomputing some things, but it is fast in SRAM.

® [otal FLOPs increases, but wall clock time decreases.

18

Results

Run-time for GPT-2
Attention Standard FLASHATTENTION
GFLOPs 66.6 75.2
HBM R/W (GB) 40.3 4.4
Runtime (ms) 41.7 7.3

FLASH attention has more FLOPs but much lower runtime due to less HBM access.

19

Results
Faster training with FLASH attention

Model implementations OpenWebText (ppl) Training time (speedup)
GPT-2 small - Huggingface |87] 18.2 9.5 days (1.0x)
GPT-2 small - Megatron-LM [77] 18.2 4.7 days (2.0x)
GPT-2 small - FLASHATTENTION 18.2 2.7 days (3.5%)
GPT-2 medium - Huggingface |87| 14.2 21.0 days (1.0x)
GPT-2 medium - Megatron-LM [77] 14.3 11.5 days (1.8%)
GPT-2 medium - FLASHATTENTION 14.3 6.9 days (3.0x)

Performance is same because there is no approximation.

20

Results

Performance on Long Range Arena (LRA) benchmark

Models ListOps Text Retrieval Image Pathfinder | Avg | Speedup

Transformer 36.0 63.6 81.6 42.3 72.7 59.3 -

FLASHATTENTION 37.6 63.9 81.4 43.5 72.7 09.8 2.4X

Block-sparse FLASHATTENTION 37.0 63.0 81.3 43.6 73.3 59.6 2.8%

Linformer |84 35.6 55.9 7.7 37.8 67.6 54.9 2.5X%

Linear Attention |50 38.8 63.2 80.7 42.6 72.5 59.6 2.3%

Performer [12' 36.8 63.6 82.2 42.1 69.9 58.9 1.8%

Local Attention |80 36.1 60.2 76.7 40.6 66.6 56.0 1.7%

Reformer |51 36.5 63.8 78.5 39.6 69.4 57.6 1.3%

Smyrf |[19] 36.1 64.1 79.0 39.6 70.5 57.9 1.7%

Performance is better because other methods use approximation.

21

Results

Modeling longer sequences

Model implementations

Context length OpenWebText (ppl) Training time (speedup)

GPT-2 small - Megatron-LM
GPT-2 small - FLASHATTENTION
GPT-2 small - FLASHATTENTION
GPT-2 small - FLASHATTENTION

1k
1k
2k
4k

18.2 4.7 days (1.0x)
18.2 2.7 days (1.7x)
17.6 3.0 days (1.6x)
17.5 3.6 days (1.3%)

We can use longer contexts since we don’t require quadratic memory.

22

So what does it have to do with PyTorch?

® PyTorch 2.0 has native support for FLASH attention!

® Caveat: attention masks are not supported yet.

https://pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial.html

23

