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Questionnaire

Before we begin...

® Do you use Transformer-based models?
® Do you use PyTorch for training your models?

® \Why are Transformers better at modeling sequence (compared to RNNs or
convolutional layers)?

® \What is the time complexity for self-attention?

® \What is the space complexity for self-attention? (Other than inputs, output)



What about “efficient” transformers?

Long line of research to approximate self-attention

® | ow-rank approximation of attention matrix

® |informer, Nystromformer
® | ocal-global attention

® | ongformer, Big Bird, Long-short transformer
® Softmax as a kernel

® Transtormers are RNNs, Performers

https://desh2608.github.io/2021-07-11-linear-transformers/
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What about “efficient” transformers?

Long line of research to approximate self-attention

o All of these methods try to reduce time-complexity ot self-attention

® But lower time-complexity does not really result in taster training/inference
wall clock time on GPUs

® Approximations also lead to worse performance

® Thisis why these methods are not widely used

e \What we want: FAST + EXACT self-attention
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Multi-head self-attention

The “"work-horse” of transformers
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X = X
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Usually also: Masking, Dropout

https://jalammar.github.io/illustrated-transformer/

6



Self-attention on the GPU

How is it implemented

S = QKT e RN ey S’ = mask(S) P = softmax(S’) ~-—% P’=dropout(P) -~ z=PV e RAXd

Matmul Masking Softmax Dropout Matmul

o Which of these operations are the most time-consuming on the GPU?



Self-attention on the GPU

Which operations are the slowest?

Matmul

Dropout

Softmax

Masking

Matmul

z =PV e RV

P’ = dropout(P)

P = softmax(S’)

S’ = mask(S)

S = QK! € RV

Attention on GPT-2

1 Matmul
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This seems counter-intuitive
GPU memory hierarchy

P’ = dropout(P)

HBEM: 1.5TB/s (40 GB)
GPU SRAM

: 12.8 GB/s

Memory Hierarchy with
Bandwidth & Memory Size



Self-attention on the GPU
Read Write

Matmul z =PV e R N*(N+d) N*d .
Attention on GPT-2

1 Matmul
Drgpgut P’ = dropout(P) N*N N*N 15

] Dropout

—
-

Softmax P = SOftmaX(S/) N*N N*N ] SOftmaX
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How can we speed-up self-attention?
Reduce number of read/write from HBM to SRAM

® Basically we want to avoid creating the big attention matrix which is of NA2
size.

® But there are 2 problems?
® Problem 1: How to compute softmax without the entire sequence?

® Problem 2: How to compute gradients for back-propagation?

11



Solution

® Problem 1: solved by TILING

® Problem 2: solved by RECOMPUTATION
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Tiling to solve Problem 1

Block-wise computation of softmax

max(X) = m

fix)
[(X)

f(x) = [en™, ..., en™"] softmax(x) =

(%) = D fx),



Tiling to solve Problem 1

Block-wise computation of softmax

max(x') = m, max(x?) = m,

X fix) = [en™™, e f(X) = [evnTT, L e

D =) A, I(x?) = ) fix?),
X! x° i i
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Tiling to solve Problem 1

Block-wise computation of softmax

max(x) = m = max(m, m,)

fx) = [en™, ..., e
X — [exl—m1+m1—m’ o e oNT1 mz—m]
= [T . eMT e . et

= [em = fix!), e )]

[(x) = e™™ . [(x)) + ™™ . [(x?)
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Tiling to solve Problem 1

Block-wise computation of self-attention output

Outer Loop

K:dxN

Copy Block to SRAM
Outer Loop

Compute Block
on SRAM

Inner Loop
doo 431N

doo1 i12uuj

sm(QKV: Nxd

Inner Loop

FlashAttention
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Recomputation to solve Problem 2

How do we get gradients for back-prop

S = QK' € R =3 S’ = mask(S)

P = softmax(S") —% P’ =dropout(P) —% z =PV e R

® Need to compute gradients with respectto Q, K, V
® |n original implementation, we will need to store all intermediate matrices.

® Butin new implementation, we don't have these big intermediate matrices.
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Recomputation to solve Problem 2

How do we get gradients for back-prop

S = QK' € R =3 S’ = mask(S)

P = softmax(S") —% P’ =dropout(P) —% z =PV e R

® |t can be shown through some matrix calculus that we can compute
derivatives of Q, K, V without the intermediates, by using the stored statistics

m and .

® This requires recomputing some things, but it is fast in SRAM.

® [otal FLOPs increases, but wall clock time decreases.
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Results

Run-time for GPT-2
Attention Standard FLASHATTENTION
GFLOPs 66.6 75.2
HBM R/W (GB) 40.3 4.4
Runtime (ms) 41.7 7.3

FLASH attention has more FLOPs but much lower runtime due to less HBM access.
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Results
Faster training with FLASH attention

Model implementations OpenWebText (ppl) Training time (speedup)
GPT-2 small - Huggingface |87] 18.2 9.5 days (1.0x)
GPT-2 small - Megatron-LM [77] 18.2 4.7 days (2.0x)
GPT-2 small - FLASHATTENTION 18.2 2.7 days (3.5%)
GPT-2 medium - Huggingface |87| 14.2 21.0 days (1.0x)
GPT-2 medium - Megatron-LM [77] 14.3 11.5 days (1.8%)
GPT-2 medium - FLASHATTENTION 14.3 6.9 days (3.0x)

Performance is same because there is no approximation.
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Results

Performance on Long Range Arena (LRA) benchmark

Models ListOps Text Retrieval Image Pathfinder | Avg | Speedup

Transformer 36.0 63.6 81.6 42.3 72.7 59.3 -

FLASHATTENTION 37.6 63.9 81.4 43.5 72.7 09.8 2.4X

Block-sparse FLASHATTENTION 37.0 63.0 81.3 43.6 73.3 59.6 2.8%

Linformer |84 35.6 55.9 7.7 37.8 67.6 54.9 2.5X%

Linear Attention |50 38.8 63.2 80.7 42.6 72.5 59.6 2.3%

Performer [12' 36.8 63.6 82.2 42.1 69.9 58.9 1.8%

Local Attention |80 36.1 60.2 76.7 40.6 66.6 56.0 1.7%

Reformer |51 36.5 63.8 78.5 39.6 69.4 57.6 1.3%

Smyrf |[19] 36.1 64.1 79.0 39.6 70.5 57.9 1.7%

Performance is better because other methods use approximation.
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Results

Modeling longer sequences

Model implementations

Context length OpenWebText (ppl) Training time (speedup)

GPT-2 small - Megatron-LM
GPT-2 small - FLASHATTENTION
GPT-2 small - FLASHATTENTION
GPT-2 small - FLASHATTENTION

1k
1k
2k
4k

18.2 4.7 days (1.0x)
18.2 2.7 days (1.7x)
17.6 3.0 days (1.6x)
17.5 3.6 days (1.3%)

We can use longer contexts since we don’t require quadratic memory.
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So what does it have to do with PyTorch?

® PyTorch 2.0 has native support for FLASH attention!

® Caveat: attention masks are not supported yet.

https://pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial.html
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