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FLASH attention
Or, why you should migrate to PyTorch 2.0
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Same group that developed S4 architecture

Read: https://hazyresearch.stanford.edu/blog/2023-03-27-long-learning



Questionnaire
Before we begin…

• Do you use Transformer-based models?


• Do you use PyTorch for training your models?


• Why are Transformers better at modeling sequence (compared to RNNs or 
convolutional layers)?


• What is the time complexity for self-attention?


• What is the space complexity for self-attention? (Other than inputs, output)
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What about “efficient” transformers?
Long line of research to approximate self-attention

• Low-rank approximation of attention matrix


• Linformer, Nystromformer


• Local-global attention


• Longformer, Big Bird, Long-short transformer


• Softmax as a kernel


• Transformers are RNNs, Performers
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https://desh2608.github.io/2021-07-11-linear-transformers/



What about “efficient” transformers?
Long line of research to approximate self-attention

• All of these methods try to reduce time-complexity of self-attention


• But lower time-complexity does not really result in faster training/inference 
wall clock time on GPUs


• Approximations also lead to worse performance


•  This is why these methods are not widely used


• What we want: FAST + EXACT self-attention
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Multi-head self-attention
The “work-horse” of transformers
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https://jalammar.github.io/illustrated-transformer/

Usually also: Masking, Dropout



Self-attention on the GPU
How is it implemented
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S = QKT ∈ ℝN×N

Matmul

S′￼ = mask(S)

Masking

P = softmax(S′￼)

Softmax

P′￼ = dropout(P)

Dropout

z = P′￼V ∈ ℝN×d

Matmul

• Which of these operations are the most time-consuming on the GPU?



Self-attention on the GPU
Which operations are the slowest?
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S = QKT ∈ ℝN×N

Matmul

S′￼ = mask(S)Masking

P = softmax(S′￼)Softmax

P′￼ = dropout(P)Dropout

z = P′￼V ∈ ℝN×d

Matmul



This seems counter-intuitive
GPU memory hierarchy
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P′￼ = dropout(P)

GPU SRAM

GPU HBM (or 
DRAM)

Read Write



Self-attention on the GPU
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S = QKT ∈ ℝN×N

Matmul

S′￼ = mask(S)Masking

P = softmax(S′￼)Softmax

P′￼ = dropout(P)Dropout

z = P′￼V ∈ ℝN×d

Matmul

N*(N+d) N*d

N*N N*N

N*N N*N

N*N N*N

2*N*d N*N

Read Write



How can we speed-up self-attention?
Reduce number of read/write from HBM to SRAM

• Basically we want to avoid creating the big attention matrix which is of N^2 
size.


• But there are 2 problems?


• Problem 1: How to compute softmax without the entire sequence?


• Problem 2: How to compute gradients for back-propagation?
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Solution

• Problem 1: solved by TILING


• Problem 2: solved by RECOMPUTATION
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Tiling to solve Problem 1
Block-wise computation of softmax
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x

max(x) = m

f(x) = [ex1−m, …, ex2N−m]

l(x) = ∑
i

f(x)i

softmax(x) =
f(x)
l(x)



Tiling to solve Problem 1
Block-wise computation of softmax
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x

max(x1) = m1

f(x1) = [ex1−m1, …, exN−m1]

l(x1) = ∑
i

f(x1)i
x1 x2

max(x2) = m2

f(x2) = [exN+1−m2, …, ex2N−m2]

l(x2) = ∑
i

f(x2)i



Tiling to solve Problem 1
Block-wise computation of softmax
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x

max(x) = m = max(m1, m2)

f(x) = [ex1−m, …, ex2N−m]
= [ex1−m1+m1−m, …, ex2N−m2+m2−m]
= [em1−m ⋅ ex1−m1, …, em2−m ⋅ ex2N−m2]
= [em1−m ⋅ f(x1), em2−m ⋅ f(x2)]

l(x) = em1−m ⋅ l(x1) + em2−m ⋅ l(x2)

x1 x2



Tiling to solve Problem 1
Block-wise computation of self-attention output
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Recomputation to solve Problem 2
How do we get gradients for back-prop
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S = QKT ∈ ℝN×N S′￼ = mask(S) P = softmax(S′￼) P′￼ = dropout(P) z = P′￼V ∈ ℝN×d

• Need to compute gradients with respect to Q, K, V


• In original implementation, we will need to store all intermediate matrices.


• But in new implementation, we don’t have these big intermediate matrices.



Recomputation to solve Problem 2
How do we get gradients for back-prop
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S = QKT ∈ ℝN×N S′￼ = mask(S) P = softmax(S′￼) P′￼ = dropout(P) z = P′￼V ∈ ℝN×d

• It can be shown through some matrix calculus that we can compute 
derivatives of Q, K, V without the intermediates, by using the stored statistics

 and .


• This requires recomputing some things, but it is fast in SRAM.


• Total FLOPs increases, but wall clock time decreases.

m l



Results
Run-time for GPT-2
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FLASH attention has more FLOPs but much lower runtime due to less HBM access.



Results
Faster training with FLASH attention
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Performance is same because there is no approximation.



Results
Performance on Long Range Arena (LRA) benchmark
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Performance is better because other methods use approximation.



Results
Modeling longer sequences
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We can use longer contexts since we don’t require quadratic memory.



So what does it have to do with PyTorch?

• PyTorch 2.0 has native support for FLASH attention!


• Caveat: attention masks are not supported yet.
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https://pytorch.org/tutorials/intermediate/scaled_dot_product_attention_tutorial.html


