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Why general representations?

e Manually specifying features is difficult and time-
consuming.

e Features should be general—not specialized towards a
single supervised task.

e E.g. features that are useful to transcribe human speech
may be less suited for speaker identification.
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Motivation and intuition

e | earn representations that encode underlying shared
information between different parts of the signal.

e How to do this?
e Given a context, predict a future target.

e Sounds familiar? LM-based representation learning.



The CPC model
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The CPC model

Predictions
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The CPC model

Autoregressive model

produces context
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The CPC model

Scoring function to maximize
mutual information between
context and future target




The CPC model

e Any encoder and autoregressive model can be used in
this framework.

e The authors used:

e Strided convolutional layers with resnet blocks for
encoder

e GRUs for the autoregressive model



The loss function

e |nstead of directly predicting a target given a context, we
try to maximize the mutual information between them.

I(z;¢) = » p(z,c)log pzz(w, C)) =) p(z,c)log plzc)
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The loss function

e INnfONCE loss
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¢ How does this loss maximize the mutual information?

fe(Ziqr,ct)
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¢ How does this loss maximize the mutual information?

Use proportionality
condition
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¢ How does this loss maximize the mutual information?
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¢ How does this loss maximize the mutual information?
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This approximation becomes more
accurate as N increases, so it is
preferable to use large negative

samples



¢ How does this loss maximize the mutual information?
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¢ How does this loss maximize the mutual information?
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¢ How does this loss maximize the mutual information?

_ fe(Tiqr,ct)
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¢ How does this loss maximize the mutual information?

fk(fb’t-|-k70t)
Ln = —E |log
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Minimizing the loss function
maximizes the lower bound
on mutual information



¢ How does this loss maximize the mutual information?

Lx = —E |log fe(Tetk,cCt)

X ijEX fk(mj’ct)_

Higher value of N is also
useful here to increase
mutual information



Experimental results

e EXxperiments with speech, text, image, and reinforcement
learning.

 Here, I'll only present results on speech data.

e Corpus: 100-hour subset of LibriSpeech.



Experimental results

_Method __ ace

Phone classification
Random 1nitialization 27.6
MFCC features 39.7
CPC

Random 1nitialization 1.87
MFCC features 17.6
CPC 97.4
Supervised 98.5

Table 1: LibriSpeech phone and speaker
classification results. For phone classifi-
cation there are 41 possible classes and
for speaker classification 251. All mod-
els used the same architecture and the
same audio input sizes.

Linear classifier trained on
top of features.

On using non-linear
classifier, CPC accuracy
Increases to 72.5—not all

iInformation is linearly
accessible.



Experimental results

Method ACC

Phone classification
Random 1nitialization 27.6
MFCC features 39.7

CPC 64.6
_Supervised ‘ 746

Speaker classification
| Random initialization
MEFCC features

CPC
Supervised

classification results. For phone classifi-
cation there are 41 possible classes and
for speaker classification 251. All mod-
els used the same architecture and the
same audio input sizes.

Figure 2: t-SNE visualization of audio (speech)
representations for a subset of 10 speakers (out
of 251). Every color represents a different
speaker.

CPCs capture both speaker
identity and speech
contents.



Key takeaways

* Autoencoding through prediction, not reconstruction.
e Capture high level content, ignore noise.

e Use sequences to “mimic” labeled data.
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