SURT 2.0: Advances in Transducer-based Multi-talker Speech Recognition

Desh Raj1, Daniel Povey ${ }^{2}$, Sanjeev Khudanpur ${ }^{1,3}$
${ }^{1}$ CLSP \& ${ }^{3}$ HLTCOE, Johns Hopkins University, Baltimore MD, USA; ${ }^{2}$ Xiaomi Corp., Beijing, China

Motivation

- Existing ASR systems are mostly geared towards single-user applications.
- We want to build systems that answer "who spoke what" for free-flowing multi-party conversations, in real-time
- How to train efficient end-to-end neural models for this task?

Challenges

Multi-talker conversations contain overlapping speech and back-channels.

There is limited amount of real data available for training end-to-end neural models.

Training such systems requires large
Compute computational resources

Continuous Streaming Multi-talker ASR

Continuous
- No need of external segmentation

Streaming
-Overlapping speakers transcribed simultaneously

Streaming Unmixing and Recognition Transducer

Shorter mixtures with more turn-taking

Zipformer for efficient sequence modeling

Results

- Experiments on meeting corpora: LibriCSS, AMI, ICSI
- LibriCSS is "simulated"; AMI and ICSI are real meetings
- SURT 2.0 obtains 44.6% and 32.2% WER on real far-field meetings.

Analysis

1. Single speaker pre-training is critical.

2. Auxiliary objectives improve performance on high-overlap conditions.

References

[1] I. Sklyar, A. Piunova, Y. Liu. "Streaming multi-speaker ASR with RNN-T." IEEE ICASSP, 2021.
[2] D. Raj, L. Lu, Z. Chen, Y. Gaur, J. Li. "Continuous streaming multi-talker ASR with dual-path transducers." IEEE ICASSP 2022

