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Objectives

Our objectives in this work are as follows:
• To extract structured knowledge from

biomedical data such as journal articles,
discharge summaries, and electronic health
records.

• To learn a joint sentence and entity type
embedding that represents local as well as
global contexts, using a combination of CNNs
and RNNs. We call this model a CRNN.

• To evaluate an attentive pooling strategy for
this purpose.

Motivation

• The regression layer must see a complete
representation of the sentence, i.e., both short
and long-term dependencies must be represented
in the sentence embedding.

• CNNs are capable of learning local features
such as short phrases or recurring n-grams.

• RNNs utilize the word order in the sentence, and
are also able to learn the long-term
dependencies.

Datasets

We experimented with 2 data sets:

1 i2b2-2010 relation extraction: This dataset
contains manually annotated discharge summaries
collected from three different hospitals, for
identifying problems, treatments and test entities,
and 8 relation types among them.

2 SemEval 2013 DDI extraction: 4 kinds of
interactions:
• Advice: opinion related to the simultaneous use of the

two drugs
• Effect: effect of the DDI together with pharmacodynamic

effect or mechanism of interaction
• Mechanism: pharmacokinetic mechanism
• Int: drug interaction without any other information

CRNN-Max

Figure : CRNN-Max architecture.

CRNN-Att

Figure : CRNN-Att architecture.

Important Result

The 2-layer CRNN model performs better because it learns both long and short term dependencies more
efficiently. Furthermore, a “recurrent+pooling” layer learns regional embeddings from a sentence.

Experimental Results

The CRNN-Max model outperforms other models
on both datasets. A small filter size for first pooling
layer and medium size for second is found to perform
best.

Model
i2b2-2010 DDI extraction

Precision Recall F1 score Precision Recall F1 score
SVM 73.20 61.17 64.29 65.39 40.13 49.74
CNN-Max 55.73 50.08 49.42 68.15 46.58 54.05
LSTM-Max 57.54 55.40 55.60 73.98 59.96 65.41
LSTM-Att 65.23 56.77 60.04 53.43 64.86 58.27
RCNN 50.07 45.34 46.47 – – –
CRNN-Max 67.91 61.98 64.38 72.91 60.88 65.89
CRNN-Att 64.62 62.14 62.45 69.03 59.04 63.24

Table : Comparison of our proposed models CRNN-Max and
CRNN-Att, with baselines, on the i2b2-2010 and DDI
extraction datasets.

f1\f2 2 3 4 5 6
1 59.97 58.96 59.30 59.18 60.03
2 59.84 56.69 60.89 62.45 61.03
3 60.46 61.77 58.85 57.34 59.81

Table : Average F1 scores on varying filter sizes f1 and f2 in
the CRNN-Att model for i2b2 dataset.

Why CRNN performs well?

1 LSTM layer learns regional embeddings
efficiently. This result has also been seen in [1].

2 Together, the two layers correctly classify a larger
range of sentence lengths (see Figure).

3 Similar distribution is obtained on considering
entity separation instead of sentence length.

Figure : Distribution of sentence lengths for various sentence
sets.

Effect of linguistic features and
attention

1 Random initialization of word embeddings
performs as well as PubMed initialization, similar
to observations made by Johnson et al. [1].

2 An SVM trained on linguistic features has high
specificity but low recall. In comparison, our
CRNN model generalizes better.

3 Attentive pooling scheme is able to select
important phrases depending upon the
classification label.

Conclusion

• Our proposed CRNN-Max model outperforms
existing methods on both datasets, since it learns
a better sentence representation.

• An attentive pooling strategy effectively learns to
weigh important words higher than common
words.

• It may be interesting to see whether tree-based or
non-continuous convolutions work well for
learning dependencies.
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