Learning Local and Global Contexts using a Convolutional Recurrent Network Model for Relation Classification in Biomedical Text Desh Raj and Sunil Kumar Sahu and Ashish Anand

Objectives

Our objectives in this work are as follows:

- To extract structured knowledge from biomedical data such as journal articles, discharge summaries, and electronic health records.
- To learn a joint sentence and entity type embedding that represents local as well as global contexts, using a combination of CNNs and RNNs. We call this model a **CRNN**.
- To evaluate an attentive pooling strategy for this purpose.

Motivation

- The regression layer must see a **complete representation** of the sentence, i.e., both short and long-term dependencies must be represented in the sentence embedding.
- CNNs are capable of learning **local features** such as short phrases or recurring n-grams.
- RNNs utilize the word order in the sentence, and are also able to learn the **long-term** dependencies.

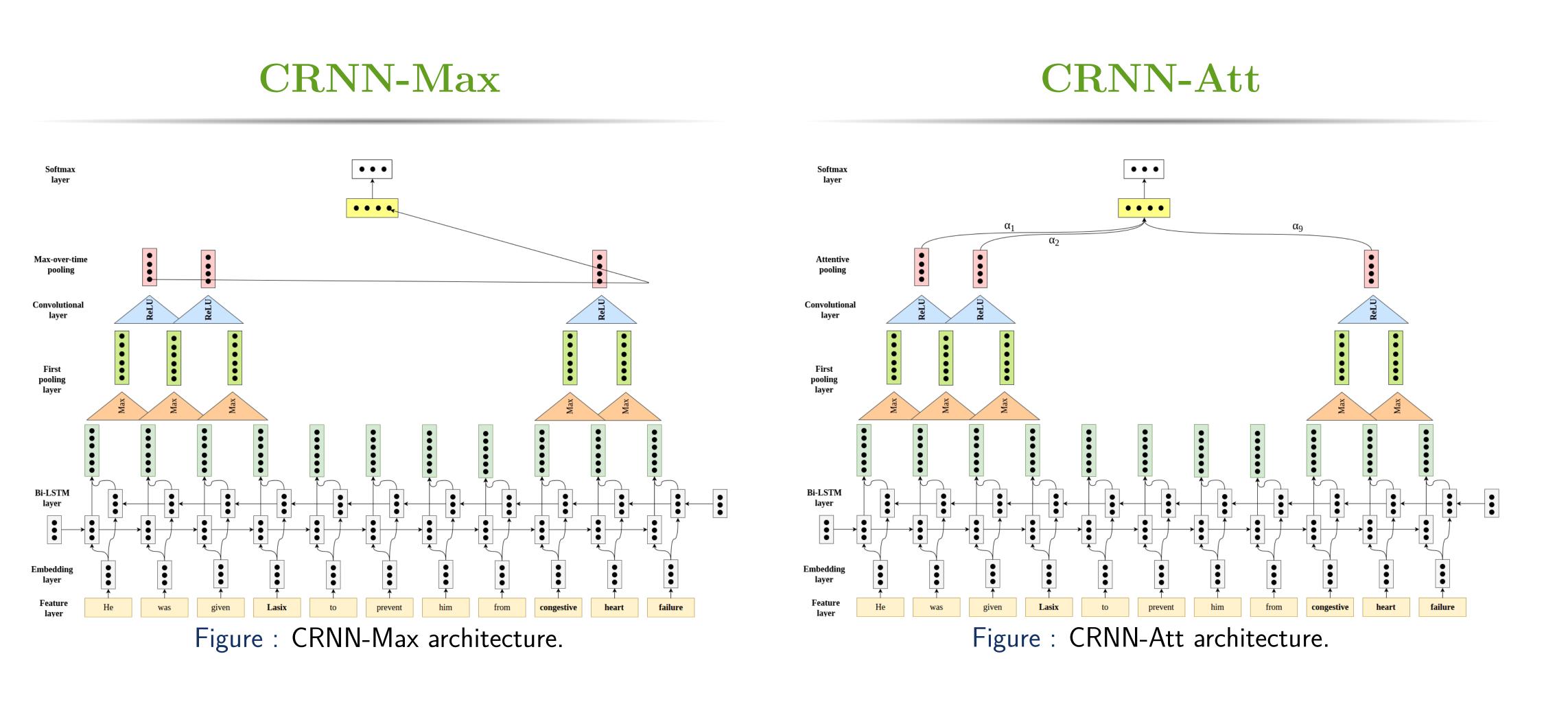
Datasets

We experimented with 2 data sets:

1*i***2***b***2-2010** relation extraction: This dataset contains manually annotated discharge summaries collected from three different hospitals, for identifying problems, treatments and test entities, and 8 relation types among them.

- **2 SemEval 2013 DDI extraction**: 4 kinds of interactions:
- Advice: opinion related to the simultaneous use of the two drugs
- *Effect*: effect of the DDI together with pharmacodynamic effect or mechanism of interaction
- Mechanism: pharmacokinetic mechanism
- *Int*: drug interaction without any other information

Department of Computer Science and Engineering, Indian Institute of Technology Guwahati



Important Result

The 2-layer CRNN model performs better because it learns both long and short term dependencies more efficiently. Furthermore, a "recurrent+pooling" layer learns regional embeddings from a sentence.

Experimental Results

The CRNN-Max model outperforms other models on both datasets. A small filter size for first pooling layer and medium size for second is found to perform best

Model	i2b2-2010			DDI extraction		
	Precision	Recall	F1 score	Precision	Recall	F1 score
SVM	73.20	61.17	64.29	65.39	40.13	49.74
CNN-Max	55.73	50.08	49.42	68.15	46.58	54.05
LSTM-Max	57.54	55.40	55.60	73.98	59.96	65.41
LSTM-Att	65.23	56.77	60.04	53.43	64.86	58.27
RCNN	50.07	45.34	46.47			
CRNN-Max	67.91	61.98	64.38	72.91	60.88	65.89
CRNN-Att	64.62	62.14	62.45	69.03	59.04	63.24

Table : Comparison of our proposed models CRNN-Max and CRNN-Att, with baselines, on the i2b2-2010 and DDI extraction datasets.

$f_1 \backslash f_2$	2	3	4	5	6
1	59.97	58.96	59.30	59.18	60.03
2	59.84	56.69	60.89	62.45	61.03
3	60.46	61.77	58.85	57.34	59.81

Table : Average F1 scores on varying filter sizes f_1 and f_2 in the CRNN-Att model for i2b2 dataset.

Why CRNN performs well?

1 LSTM layer learns **regional embeddings** efficiently. This result has also been seen in [1]. **2** Together, the two layers correctly classify a larger range of sentence lengths (see Figure). ³Similar distribution is obtained on considering entity separation instead of sentence length.

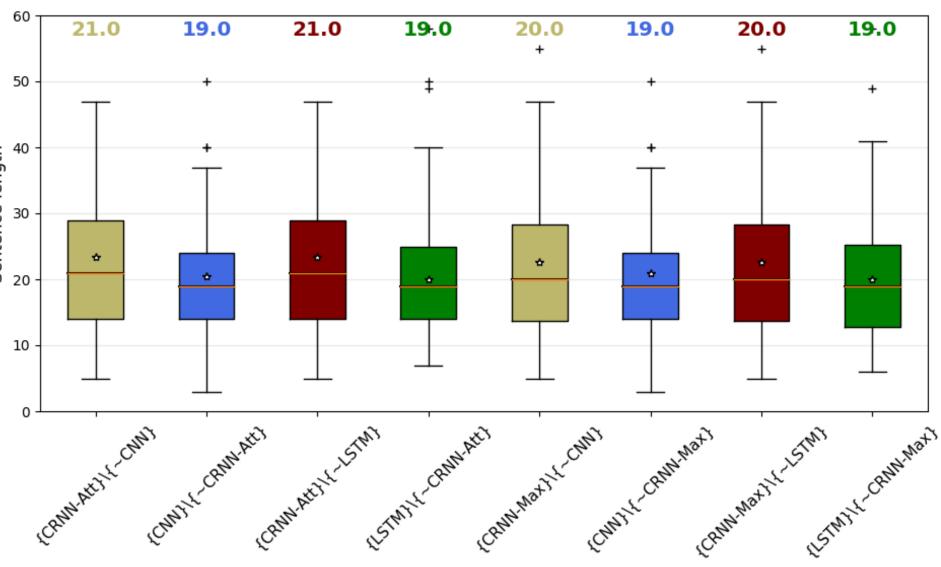


Figure : Distribution of sentence lengths for various sentence sets.

- words.

Effect of linguistic features and attention

1 Random initialization of word embeddings performs as well as PubMed initialization, similar to observations made by Johnson et al. [1]. 2 An SVM trained on linguistic features has high specificity but low recall. In comparison, our CRNN model generalizes better. **3** Attentive pooling scheme is able to select

important phrases depending upon the classification label.

Conclusion

• Our proposed CRNN-Max model outperforms existing methods on both datasets, since it learns a better sentence representation.

• An attentive pooling strategy effectively learns to weigh important words higher than common

• It may be interesting to see whether tree-based or non-continuous convolutions work well for learning dependencies.

References

[1] Rie Johnson and Tong Zhang. Supervised and semi-supervised text categorization using lstm for region embeddings. arXiv preprint arXiv:1602.02373, 2016.

[2] Sunil Kumar Sahu and Ashish Anand. Drug-drug interaction extraction from biomedical text using long short term memory network. arXiv preprint arXiv:1701.08303, 2017.

Contact Information

• Web: http://www.rdesh26.wixsite.com/home Email: r.desh@iitg.ac.in